ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Весы автомобильные Scalex 1000/Scalex 1001

Назначение средства измерений

Весы автомобильные Scalex 1000/Scalex 1001 (далее - весы) предназначены для измерений массы автомобильных транспортных средств – порожних и груженых автомобилей, прицепов и полуприцепов, и автопоездов из них (далее – TC) при статическом взвешивании.

Описание средства измерений

Принцип действия весов основан на преобразовании деформации упругих элементов весоизмерительных тензорезисторных датчиков (далее - датчик), возникающей под действием силы тяжести взвешиваемого ТС, в аналоговый или цифровой электрический сигнал, изменяющийся пропорционально массе ТС.

Аналоговые электрические сигналы с датчиков поступают в индикатор/терминал (далее - индикатор), содержащий аналогово-цифровой преобразователь, где сигналы суммируются и преобразуются в цифровой код. В случае использования датчиков с цифровым электрическим сигналом, прикладываемая нагрузка преобразуется в цифровой сигнал в датчиках, который поступает в индикатор. Результаты взвешивания массы ТС индицируются на цифровом дисплее, расположенном вместе с функциональной клавиатурой на передней панели индикатора.

Весы состоят из грузоприемного устройства (далее – ГПУ), имеющего одну или несколько платформ, датчиков, индикатора, который размещен в шкафу электроники, и внешних электронных устройств (персонального компьютера (ПК) с дисплеем и принтером).

Модификации весов отличаются размерами и применяемыми конструктивными материалами платформ (железо-бетонные - для модификаций Scalex 1001, и металлические – для модификаций Scalex 1000 или Scalex 1000P), применяемыми датчиками и индикаторами.

В весах используются:

- датчики типа:
 - С, модификации С16А и С16і, производства «Hottinger Baldwin Messtechnik GmbH», Германия, регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений (далее регистрационный номер) 60480-15, или производства фирмы «Hottinger Baldwin (Suzhou) Electronic Measurement Technology Co., Ltd.», Китай, регистрационный номер 67871-17;
 - RC3, производства «Flintec GmbH», Германия, регистрационный номер 50843-12;
 - SB2, производства «Flintec GmbH», Германия, регистрационный номер 63476-16;
- индикатор Scalex 1550 или Scalex 1560 или Scalex 1750, производства фирмы «Tamtron Systems Oy», Финляндия.

Управление весами осуществляется с помощью функциональной клавиатуры индикатора и/или ПК. Информация о массе взвешиваемого ТС по защищенному последовательному интерфейсу (интерфейс обмена информации) RS-232, RS-485, RS-422, Ethernet, и может быть передана на внешние устройства (ПЭВМ и принтер).

В весах предусмотрены следующие устройства и функции по ГОСТ OIML R 76-1:

- устройство полуавтоматической установки на нуль (п.Т.2.7.2.2);
- устройство автоматической установки на нуль (п.Т.2.7.2.3);
- устройство первоначальной установки на нуль (п.Т.2.7.2.4);
- устройство слежения за нулем (п.Т.2.7.3);
- устройство уравновешивания тары (п. Т.2.7.4.1).

На шкаф электроники весов прикрепляется табличка, содержащая следующую информацию:

- наименование или товарный знак предприятия-изготовителя;
- условное обозначение весов;
- заводской номер весов;
- класс точности по ГОСТ OIML R 76-1-2011;
- значение (Мах);
- значение минимальной нагрузки (Min);
- значение (e) и действительной цены деления (d);
- значение максимальной выборки массы тары (Т-);
- знак утверждения типа средств измерений;
- обозначение типа и серийный номер индикатора.

Модификации весов имеют обозначения вида:

Scalex $100X - [W \times L]/D$,

где Scalex 100 – обозначение типа весов;

Х – условное обозначение материала платформы ГПУ весов ГПУ:

- 0 металлическая (углеродистая сталь);
- 0Р металлическая (нержавеющая сталь);
- 1 железобетонная со стальной рамой;

[W x L] - размер платформы (ширина х длина);

D – тип используемых датчиков:

- D1- RC3; D2 - SB2; D3 - C.

Пример обозначения при заказе: Scalex 1000-[3x]/C, - весы автомобильные модификации Scalex 1000 (платформа из железобетона), размеры ГПУ (3 x 18) м, датчики типа C.

Общий вид весов представлен на рисунках 1 и 2, а индикаторов со схемами пломбировки от несанкционированного доступа и обозначениями мест нанесения знака поверки представлены на рисунках 3 и 4.

Рисунок 1 – Общий вид весов Scalex 1000/Scalex 1000P (ГПУ – металлические)

Рисунок 2 – Общий вид весов Scalex 1001 (ГПУ из железобетона)

Рисунок 3 — Общий вид индикаторов, схем пломбировки индикаторов и обозначение мест нанесения знака поверки

nna Scalev 1750, cveni i ппомбирович

Рисунок 4— Общий вид индикатора Scalex 1750, схемы пломбировки и обозначение мест нанесения знака поверки

Программное обеспечение

Программное обеспечение (ПО) весов - является встроенным и состоит из модулей (подпрограмм) обслуживания периферии, расчета массы и взаимодействия с пользователем.

ПО позволяет реализовывать:

- исключение возможности несанкционированной корректировки результатов взвешивания:
 - вычисление значения массы тары, массы ТС;
- привязку результатов взвешивания к дате и времени и их хранение в защищённой локальной базе данных;
- формирование и печать протоколов с результатами взвешивания по различным параметрам запроса.

Идентификационным признаком ΠO служат идентификационное наименование ΠO и номер версии.

Для предотвращения воздействий и защиты законодательно контролируемых параметров служит:

- программная идентификация пользователя по имени и паролю;
- пароль, вводимый после поверки;
- индикация значений калибровочного нуля и коэффициентов при поверке.

Идентификационными данными ΠO служат номера версий ΠO , который может быть выведен по запросу через меню ΠO :

- на экран монитора ПК для ПК;
- на дисплей индикатора для индикаторов весов.

Нормирование метрологических характеристик весов произведено с учетом применения ΠO .

Конструкция весов исключает возможность несанкционированного влияния на ПО и измерительную информацию.

Уровень защиты ПО «высокий» в соответствии с Р 50.2.077-2014.

Идентификационные данные ПО приведены в таблице 1.

Таблица 1 – Идентификационные данные ПО

	Значение			
Идентификационные данные (признаки)	для ПК	для индикаторов Scalex 1550, Scalex 1560	для индикатора Scalex 1750	
Идентификационное наименование ПО	-	-	-	
Номер версии (идентификационный номер) ПО	01.01.xxx	01.xx	PxxY	
Цифровой идентификатор ПО	_*			

где х – принимает значения от 0 до 9, Y – буквы латинского алфавита.

Метрологические и технические характеристики

Примечание — Весы со значением п более 3000 делений устанавливаются в закрытых защищенных от механических и атмосферных воздействий сооружениях.

Таблица 2 – Метрологические характеристики

Обозначение	Max,	Min,	d=e,	т, т	mpe,	n
модификаций	T	T	КГ	ŕ	КΓ	
Scalex 100X-[WxL]/D	10	0,1	5	от 0,1 до 2,5 включ.	$\pm 2,5$	
Scalex 100X-[WXL]/D	10	0,1	3	св. 2,5 до 10 включ.	±5	2000
				от 0,2 до 5 включ.	±5	
Scalex 100X-[WxL]/D	30	0,2	10	св. 5 до 20 включ.	±10	3000
				св. 20 до 30 включ.	±15	
				от 0,2 до 5 включ.	±5	
Scalex 100X-[WxL]/D	40	0,2	10	св. 5 до 20 включ.	±10	4000
				св. 20 до 40 включ.	±15	
				от 0,4 до 10 включ.	±10	
Scalex 100X-[WxL]/D	60	0,4	20	св. 10 до 40 включ.	±20	3000
				св. 40 до 60 включ.	±30	
				от 0,4 до 10 включ.	±10	
Scalex 100X-[WxL]/D	80	0,4	20	св. 10 до 40 включ.	±20	4000
				св. 40 до 80 включ	±30	
Seeley 100V (Ww.L1/D	100	1	50	от 1 до 25 включ.	±25	
Scalex 100X-[WxL]/D	100	1	30	св. 25 до 100 включ.	±50	2000
				от 1 до 25 включ.	±25	
Scalex 100X-[WxL]/D	150	1	50	св. 25 до 100 включ.	±50	3000
				св. 100 до 150 включ.	±75	
				от 1 до 25 включ.	±25	
Scalex 100X-[WxL]/D	200	1	50	св. 25 до 100 включ.	±50	4000
				св. 100 до 200 включ	±75	

Пределы допускаемой погрешности в эксплуатации равны удвоенному значению пределов допускаемой погрешности при первичной поверке (mpe).

Пределы допускаемой погрешности весов после выборки массы тары соответствуют пределам допускаемой погрешности для массы нетто.

^{* -} Данные недоступны, так как данное ПО не может быть модифицировано, загружено или прочитано через какой-либо интерфейс после опломбирования

Таблица 3 – Метрологические характеристики

Наименование характеристики	Значение
Пределы допускаемой погрешности устройства установки на нуль	±0,25e
Диапазон установки на нуль (суммарный) устройств установки нуля и	
слежения за нулём, % от Мах, не более	4
Диапазон первоначальной установки нуля, % от Мах, не более	20
Диапазон рабочей температуры индикаторов	
(ГОСТ OIML R 76-1-2011, п. 3.9.2.2), °С	от -10 до +40
Особый диапазон рабочих температур, °С, для ГПУ с датчиками типа:	
- C	от -50 до +50
- SB2 или RC3	от -10 до +40
Показания индикации массы, кг, не более	Max+9e
Диапазон выборки массы тары (Т-), % от Мах	от 0 до 100

Таблица 4 – Основные технические характеристики

Наименование характеристики	Значение
Параметры электрического питания от сети переменного тока:	
- напряжение, В	от 195,5 до 253
- частота, Гц	от 49 до 51
Потребляемая мощность, В:А, не более	300
Время прогрева весов, мин, не менее	30
Масса одной платформы, т, не более	4

Максимальная нагрузка весов (Мах) в зависимости от количества платформ, датчиков, длины и ширины платформы приведены в таблице 5.

Таблица 5 — Технические характеристики

Количество		Количество	Длина платформы,	Ширина
Мах, т	платформ, шт.	датчиков, шт.	M	платформы, м
1	2	3	4	5
10	1	4	4, 6, 8, 10	3, 4, 5, 6
30	1	4	6, 8, 10, 12	3, 4, 5, 6
	2	6	10, 12, 16, 18	3, 4, 5, 6
40	1	4	6, 8, 10, 12, 13	3, 4, 5, 6
	2	8	12, 16, 18, 20, 24, 26	3, 4, 5, 6
	2	6	12, 16, 18	3, 4, 5, 6
	3	8	18, 21, 24, 26	3, 4, 5, 6
60	1	4	6, 8, 10, 12, 13	3, 4, 5, 6
	2	8	12, 16, 18, 20, 24, 26	3, 4, 5, 6
	2	6	12, 16, 18	3, 4, 5, 6
	3	8	18, 21, 24	3, 4, 5, 6
	4	10	24	3, 4, 5, 6
80	1	4	6, 8, 10, 12, 13	3, 4, 5, 6
	2	8	12, 16, 18, 20, 24, 26	3, 4, 5, 6
	2	6	12, 16, 18	3, 4, 5, 6
	3	8	18, 21, 24	3, 4, 5, 6
	4	10	24	3, 4, 5, 6

Продолжение таблицы 5

продолжение такинды с					
1	2	3	4	5	
100	1	4	6, 8, 10, 12, 13	3, 4, 5, 6	
	2	8	12, 16, 18, 20, 24, 26	3, 4, 5, 6	
	2	6	12, 16, 18	3, 4, 5, 6	
	3	8	18, 21, 24	3, 4, 5, 6	
	4	10	24	3, 4, 5, 6	
150	1	4	5, 6, 7, 8, 9, 10, 12, 13	3, 4, 5, 6, 7, 8	
	2	8	12, 16, 18, 20, 24, 26	3, 4, 5, 6, 7, 8	
	2	6	8, 10, 12, 14, 16	3, 4, 5, 6, 7, 8	
	3	8	18, 21, 24, 26	3, 4, 5, 6, 7, 8	
	4	10	20, 24, 28	3, 4, 5, 6, 7, 8	
200	1	4	5, 6, 7, 8, 9, 10	3, 4, 5, 6, 7, 8	
	2	6	10, 12, 14, 16, 18, 20	3, 4, 5, 6, 7, 8	
	3	8	15, 18, 21, 24, 27, 30	3, 4, 5, 6, 7, 8	
	4	10	20, 24, 28, 32	3, 4, 5, 6, 7, 8	

Знак утверждения типа

наносится на титульный лист Руководства по эксплуатации типографским способом и на табличку, прикрепленную на шкаф электроники, фотохимическим способом.

Комплектность средства измерений

Таблица 6 – Комплектность средства измерений

Наименование	Обозначение	Количество
Весы автомобильные	Scalex 1000 или Scalex 1001 (по заказу)	1 шт.
Руководство по эксплуатации	-	1 экз.

Поверка

осуществляется по документу ГОСТ OIML R 76-1–2011 «ГСИ. Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания» (приложение ДА. Методика поверки весов).

Основные средства поверки:

- рабочий эталон 4-го разряда по ГОСТ 8.021-2015 «ГСИ. Государственная поверочная схема для средств измерений массы» гири номинальной массой от 20 до 5000 кг, класса точности M_1 и M_{1-2} по ГОСТ OIML 111-1-2009 «ГСИ. Гири классов E_1 , E_2 , F_1 , F_2 , M_1 , M_{1-2} , M_2 , M_{2-3} и M_3 . Метрологические и технические требования».

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

Знак поверки наносится на свидетельство о поверке и на пломбы, как показано на рисунках 3 и 4.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к весам автомобильным Scalex 1000/Scalex 1001

ГОСТ OIML R 76-1-2011 ГСИ. Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания

ГОСТ 8.021-2015 ГСИ. Государственная поверочная схема для средств измерений массы Техническая документация изготовителя фирмы «Tamtron Systems Oy», Финляндия

Заявитель

Фирма «Tamtron Systems Oy», Финляндия

Адрес: Käärmesaarentie 3 B, FI-02160 Espoo, Finland

Телефон: +358 9 41300400 Факс: +358 9 4523104

E-mail: <u>sales@tamtronsystems.com</u> Web-сайт: www.tamtronsystems.com

Испытательный центр

Закрытое акционерное общество Консалтинго-инжиниринговое предприятие «Метрологический центр энергоресурсов» (ЗАО КИП «МЦЭ»)

Адрес: 125424, г. Москва, Волоколамское шоссе, д. 88, стр.8

Телефон (факс): (495) 491-78-12

E-mail: sittek@mail.ru

Аттестат аккредитации ЗАО КИП «МЦЭ» по проведению испытаний средств измерений в целях утверждения типа RA.RU.311313

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

. . . .

А.В. Кулешов

М.п. «___» _____ 2019 г.