УТВЕРЖДАЮ

Заместитель директора ФГУП «СНИИМ»

Е.С. Коптев

127° марта 2017 г.

Модуль инклинометра МИ-ДОЗ. Методика поверки

416722-505-66172412-11 МП

Содержание

УТВЕРЖДАЮ	. 1
1 Область применения	
2 Нормативные ссылки	
3 Операции и средства поверки	3
4 Требования к квалификации поверителей	
5 Требования безопасности	4
6 Условия поверки	
7 Подготовка к поверке	. 5
7.1 Подготовка к поверке Инклинометра	. 5
8 Проведение поверки	5
8.1 Внешний осмотр Инклинометра	. 5
8.2 Опробование и проверка цифрового идентификатора программного	
обеспечения	. 6
8.3Определение (контроль) метрологических характеристик	. 6
9 Оформление результатов поверки	. 7
Приложение А	

Модуль инклинометра МИ-ДОЗ. Методика поверки

416722-505-66172412-11 ΜΠ

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящая методика поверки устанавливает методы и средства первичной и периодической поверки на СИ «Модуль инклинометра МИ-ДОЗ» (далее – Модуль).

Интервал между поверками – 1 год.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящей методике использованы следующие нормативные документы и ссылки:

ΓOCT 2875-88	Меры плоского угла призматические. Общие техни-
	ческие условия
ΓΟCT 12.3.019-80	Испытания и измерения электрические. Общие тре-
	бования безопасности
ГОСТ 26116-84	Аппаратура геофизическая скважинная. Общие тех-
	нические условия
РМГ 74-2004	ГСИ. Методы определения межповерочных и межка-
	либровочных интервалов средств измерений
РД 153-34.0-	Правила техники безопасности при эксплуатации
03.150-00	электроустановок потребителей

3 ОПЕРАЦИИ И СРЕДСТВА ПОВЕРКИ

3.1 При проведении первичной и периодической поверки выполняют операции и применяют средства поверки, указанные в таблице 1.

Таблина 1 – Операции и средства поверки

Наименование	Номер подраздела,	Средство поверки
операции	пункта настоящей	
	методики поверки	
Внешний осмотр	8.1	-
Опробование	8.2	-
Проверка цифрового идентифи-		
катора программного обеспече-		
кин		
Определение (контроль) метро-	8.3	-
логических характеристик		
Определение диапазона и по-	8.3.1	Рабочий эталон единицы плоского
грешности измерений модулем		угла 4 разряда в диапазоне значе-
азимутальных углов		ний от 0 до 360°
		- 3-х осевой позиционирующий сто-
		лик DITS-CA, диапазон воспроиз-
		ведения азимутальных, зенитных и
		апсидальных углов от 0 до 360°

Определение диапазона и погрешности измерений модулем зенитных углов	8.3.2	Рабочий эталон единицы плоского угла 4 разряда в диапазоне значений от 0 до 360° - 3-х осевой позиционирующий столик DITS-CA, диапазон воспроизведения азимутальных, зенитных и апсидальных углов от 0 до 360°
Определение диапазона и погрешности измерений модулем апсидальных углов	8.3.3	Рабочий эталон единицы плоского угла 4 разряда в диапазоне значений от 0 до 360° - 3-х осевой позиционирующий столик DITS-CA, диапазон воспроизведения азимутальных, зенитных и апсидальных углов от 0 до 360°
Определение погрешности измерений температуры температурыными датчиками модуля	8.3.4	 Рабочий эталон единицы температуры 3 разряда в диапазоне от минус 50 до 200°С и Камера тепла, максимальный нагрев не менее 150°С

Примечания

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

4.1 К проведению испытаний допускают лиц, имеющих квалификацию инженера, опыт работы с электронными приборами не менее трех лет и аттестованных в установленном порядке не ниже ІІІ группы по технике безопасности на право проведения работ с электрооборудованием до 1000 В (ПОТ Р М-016), ознакомившихся с комплектом ЭД и аттестованных в качестве поверителей в установленном порядке.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 5.1 При проведении поверки соблюдают следующие требования:
- -РД 153-34.0-03.150 и ГОСТ 12.3.019;
- осуществлять защитное заземление всех металлических корпусов оборудования, приборов, эталонов, используемых во время поверки, медным изолированным проводом;
- соблюдать требования безопасности, приведенные в технической документации на Инклинометры, испытательные стенды, эталоны.

6 УСЛОВИЯ ПОВЕРКИ

- 6.2 Электропитание осуществляют от трехпроводной однофазной сети переменного тока напряжением 220^{+22}_{-33} В, частотой 50 ± 1 Гц, оборудованной защитным заземлением

¹ Допускается применение других средств поверки, обеспечивающих определение метрологических характеристик с требуемой точностью.

² Применяемые средства поверки должны иметь действующие свидетельства о поверке.

7 ПОДГОТОВКА К ПОВЕРКЕ

7.1 Подготовка к поверке Модуля

Перед проведением поверки проверяют наличие и состояние средств поверки согласно их эксплуатационной документации, наличие свидетельств о поверке и клейм на средства поверки и срок очередной поверки средств измерений.

Перед началом измерений необходимо подать напряжение питания на эталоны и подготовить их к работе в соответствии с инструкциями по эксплуатации.

- 7.2 Для определения (контроля) метрологических характеристик модулей используют вспомогательный 3-х осевой позиционирующий столик DITS-CA (далее Столик) в качестве компаратора, передающего значения физических величин угла и температуры от эталонов к модулям.
- 7.2.1 На ось вращения Столика по азимуту устанавливают меру плоского угла призматическую 24-гранную (далее призма). На подставку напротив оси вращения устанавливают автоколлиматор.
- 7.2.2 Совмещают автоколлимационное изображение от первой грани призмы с вертикальным штрихом среднего деления шкалы и снимают отсчет α0.
- 7.2.3 Поворачивают Столик на угол 45° и совмещают автоколлимационное изображение от грани призмы с вертикальным штрихом среднего деления шкалы и снимают отсчет αi.
- 7.2.4 Операцию 7.2.3 выполняют для всех граней призмы при вращении по оси вращения Столика по азимуту на 360°, не менее чем в два приема. По результатам измерений вычисляют среднее арифметическое значение показаний α іср для всех углов призмы. Значение погрешности измерений каждого угла Δ і определяют по формуле:

$$\Delta_i = \alpha_i - \alpha_0 - \sum_{j=1}^i \Gamma_j , \qquad (1)$$

где: Γ ј — действительное значение центрального угла ј-й грани призмы (по свидетельству), ... ° ... ′ ... ″.

Полученные значения измерений углов и погрешностей измерений по оси вращения Столика по азимуту заносят в протокол (Приложение A, Таблица A.1). Максимальная абсолютная погрешность не должна превышать ± 0.1 °.

- 7.2.5 Измерения углов Столика по осям вращения по зениту и по апсиду выполняют в соответствии с 7.2.2 7.2.4, поочередно устанавливая призму на соответствующие оси вращения Столика и вращая Столик в диапазонах от 0 до 120° по зениту и от 0 до 360° по апсиду.
- 7.2.6 Полученные значения измерений углов измерений по осям вращения Столика по зениту и по апсиду заносят в соответствующие протоколы (Приложение A, Таблицы A.2 и A.3). Максимальная абсолютная погрешность измерений не должна превышать \pm 0,05°.

8 ПРОВЕДЕНИЕ ПОВЕРКИ

- 8.1 Внешний осмотр Модуля
- 8.1.1 При внешнем осмотре Модуля должно быть установлено:

- соответствие комплекта поставки данным, приведенным в Руководстве по Эксплуатации;
 - отсутствие внешних дефектов, повреждений кабелей;
 - целостность и читабельность надписей на шильдиках.
- 8.2 Опробование и проверка цифрового идентификатора программного обеспечения
- 8.2.1На ПЭВМ запускают программу ZTScontrol.exe. Программа автоматически проводит тестирование основных блоков Модуля.
- 8.2.2 Опробование заключается в проверке ПО и работоспособности Модуля. Проверяют возможность получения данных с Модуля.
- 8.2.3 Проверка цифрового идентификатора программного обеспечения Контрольная сумма исполняемого кода должна соответствовать таблице 2 Т а б л и ц а 2

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	ZTScontrol.exe
Номер версии (идентификационный номер) ПО	Не ниже 1.0
Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	5C923865
Алгоритм вычисления цифрового идентифика-	CD C2A
тора	CRC32

8.3 Определение (контроль) метрологических характеристик

- 8.3.1 Определение диапазона измерений и погрешности измерений модулем азимутальных углов.
- 8.3.1.1 Модуль устанавливают во внутреннюю камеру Столика и выставляют столик в положение нулевого значения азимутального угла. В программном обеспечении инклинометра обнуляют показания углов.
- 8.3.1.2 Последовательно изменяют значения азимутальных углов Столика через 45° в диапазоне от 0 до 360° .
- 8.3.1.3 Для каждого угла определяют абсолютную погрешность измерений значений азимутальных углов по формуле:

$$\Delta = A - \alpha, \tag{1}$$

- где A действительный угол поворота Столика, определенный по автоколлиматору и призме;
 - α показания угла инклинометром.
- 8.3.1.4 Значения погрешностей измерений модулей при измерениях значений азимутальных углов заносят в протокол (приложение A, таблица A.4). Погрешность не должна превышать $\pm 1.0^{\circ}$.
- 8.3.2 Определение диапазона измерений и погрешности измерений модулем зенитных углов.
- 8.3.2.1 На ось вращения по зениту непосредственно устанавливают призму, напротив которой согласно 7.2.1 7.2.2 устанавливают автоколлиматор.
- 8.3.2.2 Последовательно изменяют значения зенитных углов Столика через 30° в диапазоне от 0 до 120°.

- 8.3.2.3 Для каждого угла определяют абсолютную погрешность измерений значений зенитных углов по формуле (1).
- 8.3.2.4 Значения погрешностей измерений модулей при измерениях значений зенитных углов заносят в протокол (приложение A, таблица A.5). Погрешность не должна превышать $\pm 0.2^{\circ}$.
- 8.3.3 Определение диапазона измерений и погрешности измерений модулем апсидальных углов.
 - 8.3.3.1 Выставляют ось вращения Столика по апсиду в положение 0°.
- 8.3.3.2 Последовательно изменяют значения апсидальных углов Столика через 45° в диапазоне от 0 до 360°.
- 8.3.3.3 Для каждого угла определяют абсолютную погрешность измерений значений апсидальных углов по формуле (1).
- 8.3.3.4 Значения погрешностей измерений модулей при измерениях значений апсидальных углов заносят в протокол (приложение A, таблица A.6). Погрешность не должна превышать $\pm 0.5^{\circ}$.
- 8.3.4Определение погрешности измерений температуры температурными датчиками модуля
- 8.3.4.1 При использовании Столика, Модуль и Рабочий эталон единицы температуры 3 разряда (далее термоизмеритель) помещают в камеру Столика и устанавливают температуру 20 °C. Дожидаются стабилизации температуры датчика. Определяют отклонение показаний температурного датчика модуля от показаний термоизмерителя. Повторяют измерения еще в двух точках диапазона воспроизведения температуры модуля. Отклонение не должно превышать ±1 °C.
- 8.3.4.2 При использовании камеры тепла термоизмеритель и модуль помещают в камеру тепла, в которой выполняют нагрев до температуры $20~^{\circ}$ С, дожидаются стабилизации температуры датчика. Определяют отклонение показаний рабочего эталона от показаний термоизмерителя. Повторяют измерения еще в двух точках диапазона воспроизведения температуры модуля. Отклонение не должно превышать $\pm 1~^{\circ}$ С.

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1 Результаты поверки оформляются в соответствии с Порядком проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке. Знак поверки наносится на свидетельство о поверке.
- 9.2 Отрицательные результаты оформляются в соответствии с Порядком проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке, при этом СИ к дальнейшей эксплуатации в сфере государственного регулирования не допускают.

Зам. начальника отдела
______ А.В. Дегтярева

Протокол поверки

Модуля инклинометра МИ-ДОЗ_

Заводской №			
Вид поверки: первич	ная		
Условия проведения	поверки:		
Температура окружа	вющего воздуха		
Относительная влаж	•		
Атмосферное давлен	•		
,= .=	416722-505-66172412-11	1 МП «Модуль инклине	ометра
МИ-ДОЗ. Методика		•	•
Средства поверки:			
Результаты поверки	•		
Внешний осмотр			
Опробование			
Определение метрол	огических характерист	ик:	
	ультаты определения г		при измерениях
азимутальных углов	-	•	•
Номинальное	Отсцет по эталону	Отсцет по стопику	Погранциость

Номинальное	Отсчет п	ю эталону	Отсчет п	о столику	Погрешность
значение	прямой	обратный	прямой	обратный	столика, °
задаваемого угла, °	ход	ход	ход	ход	
0					
45	,		,		
90					
135					
180					
225					
270					
315			day!		

Таблица А.2 – Результаты определения погрешности столика при измерениях зенитных углов

Номинальное	Отсчет п	о эталону	Отсчет п	о столику	Погрешность
значение	прямой	обратный	прямой	обратный	столика, °
задаваемого угла, °	ход	ход	ход	ход	
0					
30					
60					
90					
120					

Таблица А.3 – Результаты определения погрешности столика при измерениях ап-

сидальных углов

Номинальное	Отсчет по эталону		Отсчет по столику		Погрешность
значение	прямой	обратный	прямой ход	обратный	столика, °
задаваемого угла, °	ход	ход	прямои ход	ход	
0					
90					
135					
180					
225					*
270					
315					

Таблица А.4 – Результаты определения погрешности модуля при измерениях ази-

мутальных углов

утальных углов			.0.010 10.01
Номинальное	Действитель-		
значение	ное значение	Показания угла	Погрешность
задаваемого	угла (по отсче-	модулем	модуля, °
угла, °	ту по эталону)		
0			
45			
90			
135			
180			
225			
270			
315			
0			

Таблица А.5 – Результаты определения погрешности модуля при измерениях зе-

нитных углов

Номинальное значение	Действительное значение угла (по отсчету по	Показания угла	Погрешность модуля, °
задаваемого угла,		модулем	модуля,
	эталону)		
0			
30			
60			
90			
120			

Таблица А.6 – Результаты определения погрешности модуля при измерениях ап-

сидальных углов

Номинальное	Действительное		
значение	значение угла	Показания угла	Погрешность
задаваемого	(по отсчету по	модулем	модуля, °
угла, °	эталону)		
0		7	
45			
90			
135			
180			
225			
270			
315			
0			