УТВЕРЖДАЮ Генеральный директор ООО «Автопрогресс–М»

МАШИНЫ КООРДИНАТНЫЕ ИЗМЕРИТЕЛЬНЫЕ СЕРИИ SPARK

МЕТОДИКА ПОВЕРКИ

МП АПМ 103-18

Настоящая методика поверки распространяется на машины координатные измерительные серии Spark, производства «Innovalia Metrology», Испания (далее – КИМ) и устанавливает методику их первичной и периодической поверок.

Интервал между поверками - 1 год.

1 Операции и средства поверки

При проведении поверки должны применятся средства поверки и выполняться операции, указанные в таблице 1.

Таблица 1

Наименование	Номер пунк-	Средства поверки	Проведение	операции при
операции	та методики		первичной	периодической
	поверки		поверке	поверке
Внешний осмотр	6.1	Визуально	Да	Да
Опробование	6.2	Визуально	Да	Да
Идентификация про- граммного обеспечения	6.3	-	Да	Да
Определение абсолютной погрешности измерительной головки MPE _P	6.4	Сфера номинальным диаметром 25,4 мм без покрытия (рег. № 64593-16)	Да	Да
Определение абсолютной погрешности измерений длины (пространственных измере-	0.11	Рабочий эталон 3-го разряда по ГОСТ Р 8.763-2011 - меры длины концевые пло-	A**	
ний) МРЕ	6.5	скопараллельные	Да	Да

Примечание: Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик, поверяемых СИ с требуемой точностью.

2 Требования к квалификации поверителей

К проведению поверки допускаются лица, изучившие эксплуатационные документы на КИМ, имеющие достаточные знания и опыт.

3 Требования безопасности

Перед проведением поверки следует изучить эксплуатационную документацию на поверяемую КИМ и приборы, применяемые при поверке.

К поверке допускаются лица, прошедшие инструктаж по технике безопасности при работе на электроустановках.

Перед проведением поверки средства поверки и поверяемую КИМ подготавливают к работе в соответствии с их эксплуатационными документами.

4 Условия проведения поверки

При проведении поверки должны соблюдаться следующие нормальные условия измерений:

- температура окружающей среды, °С 20±1;
- относительная влажность воздуха, %, не более 85;
- максимальный пространственный температурный градиент во время измерений, °С/м, не более ±0,5;
- максимальный временной температурный градиент, °С/ч, не более ±0,5.

5 Подготовка к поверке

Перед проведением поверки должны быть выполнены следующие подготовительные работы:

- проверить наличие действующих свидетельств о поверке на средства поверки;

- концевые меры длины и сферу выдержать до начала измерений в помещении, где находится КИМ в течение 3 часов.

6 Проведение поверки

6.1 Внешний осмотр

При внешнем осмотре устанавливают соответствие КИМ следующим требованиям:

- наружные поверхности КИМ не должны иметь дефектов, влияющих на ее эксплуатационные характеристики;
- на рабочих поверхностях КИМ не должно быть царапин, забоин и других дефектов, влияющих на плавность перемещений подвижных узлов КИМ;
 - наконечники щупов не должны иметь сколов, царапин и других дефектов;
- маркировка и комплектность должны соответствовать требованиям эксплуатационной документации.

6.2 Опробование

Сначала проверяют взаимодействие частей на холостом ходу перемещением подвижных узлов на полные диапазоны. Перемещения должны быть плавными, без рывков и скачков.

Далее проводят однократное измерение типовой детали с использованием всех функциональных узлов и программного обеспечения КИМ. Затем то же самое выполняют в автоматическом режиме.

6.3 Идентификация программного обеспечения

Для проведения идентификации программного обеспечения (далее — ПО) необходимо запустить ПО для работы с КИМ «МЗ». После запуска ПО на верхней панели пользовательского интерфейса выбрать вкладку меню «Справка» и во всплывшем контекстом меню выбрать вкладку «О программе…». На экране отображается наименования и номер версии ПО.

КИМ считается выдержавшим проверку, если идентификационные данные соответствуют приведённым в таблице 2.

Таблица 2.

	The second secon
Идентификационное наименование ПО	M3
Номер версии (идентификационный номер) ПО, не ниже	3.8

6.4 Определение метрологических характеристик

6.4.1 Определение абсолютной погрешности измерительной головки МРЕР

6.4.1.1 Определение абсолютной погрешности измерительной головки МРЕР (с контактным датчиком)

Установить сферу на плите рабочего стола КИМ с помощью стойки. Проводится 3 цикла измерений в автоматическом режиме. В каждом цикле производятся измерения поверхности сферы в 25 равномерно расположенных на полусфере точках.

Рекомендуемая модель измерений включает:

- одну точку на вершине испытуемой сферы;
- четыре точки (равномерно распределенных) на 22° ниже вершины (рис 1);
- восемь точек (равномерно распределенных) на 45° ниже вершины и повернутых на 22,5° относительно предшествующей группы;
- четыре точки (равномерно распределенных) на 68° ниже вершины (рис 1) повернутых на 22,5° относительно предшествующей группы;
- восемь точек (равномерно расположенных) на 90° ниже вершины, т.е. на диаметре и повернутых относительно предыдущей группы на 22.5° .

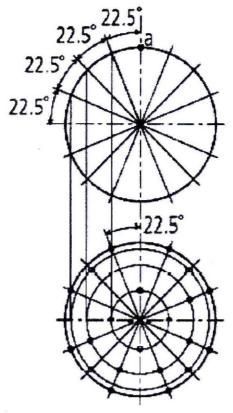


Рисунок 1 – Точки касания на сфере для определения абсолютной погрешности измерительной головки, MPEp

Погрешность определяется как сумма максимальных отклонений измеренного профиля в положительную и отрицательную области от средней сферы, рассчитанной по методу наименьших квадратов:

$$\Delta_{0r} = |\max(D_{i+})| + |\max(D_{i-})|, \tag{1}$$

где D_{i+} - отклонение точки і от средней сферы в положительную область, мм;

 D_{i-} - отклонение точки і от средней сферы в отрицательную область, мм.

Абсолютная погрешность измерений контактным датчиком не должна превышать значений, указанных в таблице 3.

6.4.1.2 Определение абсолютной погрешности измерительной головки MPE_P (с лазерным сканером Optiscan)

Установить сферу на плите рабочего стола КИМ с помощью стойки. Проводится 10 циклов измерений в автоматическом режиме. В каждом цикле производится сканирование поверхности сферы в следующих направлениях: в горизонтальной плоскости четыре направления через 90°, одно сверху.

Погрешность определяется как разность между измеренным значением диаметра сферы с помощью лазерного сканера ($D_{u_{3M},n}$) и действительным средним значением диаметра сферы ($D_{c\phi}$):

$$\Delta_{\mathbf{Qr}} = D_{u_{3M,n}} - D_{c\phi}, \tag{2}$$

где n - номер цикла измерений.

Абсолютная погрешность измерений лазерным сканером Optiscan не должна превышать значений, указанных в таблице 3.

	Пределы допускаемой абсолютной погрешности, ±, мкм MPE_{P}				
Модификация					
	Контактный датчик ТР20	Контактный датчик SP25M	Лазерный сканер Optiscan		
06.05.05	2,5	2,0	6,5		
10.07.05	2,5	2,0	6,5		
10.07.07	2,5	2,0	6,5		
10.07.10	2,8	2,3	6,8		
12.10.05	2,8	2,3	6,8		
12.10.07	3,1	2,6	7,1		
12.10.10	3,4	2,8	7,4		
16.10.05	2,8	2,3	6,8		
16.10.07	3,1	2,6	7,1		
16.10.10	3,4	2,8	7,4		
20.10.07	3,1	2,6	7,1		
20.10.10	3,4	2,8	7,4		
20.12.10	3,5	2,9	7,5		
30.10.10	3,4	2,8	7,4		
30.12.10	3,5	2,9	7,5		
30.15.10	3,6	3,1	7,6		
30.15.13	3,7	3,2	7,7		
40.20.15	3,7	3,2	7,7		

6.4.2 Определение абсолютной погрешности измерений длины (пространственных измерений) МРЕ

Концевые меры длины или устройство с концевыми мерами длины устанавливают в пространстве измерений КИМ вдоль линии измерений, используя теплоизолирующие перчатки. Обязательно осуществляется компенсация погрешностей, связанных с отклонениями параметров окружающей среды, отличающихся от нормальных. Измерения проводят в семи различных положениях (рис. 2), каждое измерение повторяется 3 раза. При этом должно быть измерено не менее четырех отрезков различной длины. Измерения должны проводиться в автоматическом режиме.

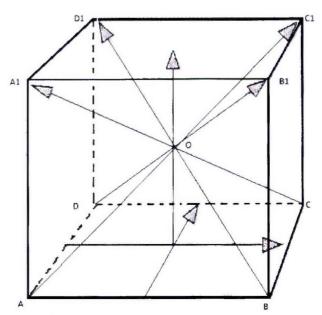


Рисунок 2 – Стандартные положения, в которых производят измерения в пределах объема КИМ

Для диапазона измерений свыше 2000 мм рекомендуется проводить измерения вдоль осей в

нескольких местах, равномерно расположенных по длине оси, а для пространственных диагоналей рекомендуется проводить измерения впереди и сзади, справа и слева рабочего объема КИМ.

При использовании контактного датчика провести определение ориентации КМД ощупыванием трех точек на ней, разнесенных как можно дальше друг от друга. Далее провести сбор точек с измерительных поверхностей КМД в автоматическом режиме.

При использовании лазерного сканера Optiscan провести определение ориентации КМД сканированием нерабочих поверхностей. Далее провести сканирование измерительных поверхностей КМД в автоматическом режиме.

Результат измерений длины отрезка, воспроизводимого концевой мерой длины или устройством с концевыми мерами длины (Ljik), и действительное значение этого отрезка (Lдjik), сравнить друг с другом и вычислить абсолютную погрешность измерений длины (пространственных измерений) МРЕ_Е по формуле:

$$MPE_E = L_{ijk} - L_{nijk}. \tag{3}$$

где: і - номер КМД;

і - номер измерений;

k - номер положения.

Абсолютная погрешность измерений длины (пространственных измерений) MPE_E не должна превышать значений, указанных в таблице 4.

Таблица 4.

	Пределы допускаемой абсолютной погрешности, ±, мкм MPE_E				
Модификация					
	Контактный датчик ТР20	Контактный датчик SP25M	Лазерный сканер Optiscan		
06.05.05	2,5+2,2*L/1000	2,0+2,2*L/1000	6,5+2,2*L/100		
10.07.05	2,5+2,2*L/1000	2,0+2,2*L/1000	6,5+2,2*L/100		
10.07.07	2,5+2,5*L/1000	2,0+2,5*L/1000	6,5+2,5*L/100		
10.07.10	2,8+2,8*L/1000	2,3+2,8*L/1000	6,8+2,8*L/100		
12.10.05	2,8+2,8*L/1000	2,3+2,8*L/1000	6,8+2,8*L/100		
12.10.07	2,9+2,8*L/1000	2,4+2,8*L/1000	6,9+2,8*L/100		
12.10.10	3,1+3,2*L/1000	2,6+3,2*L/1000	7,1+3,2*L/100		
16.10.05	2,8+2,8*L/1000	2,3+2,8*L/1000	6,8+2,8*L/100		
16.10.07	2,9+2,8*L/1000	2,4+2,8*L/1000	6,9+2,8*L/100		
16.10.10	3,1+3,2*L/1000	2,6+3,2*L/1000	7,1+3,2*L/100		
20.10.07	2,9+2,8*L/1000	2,4+2,8*L/1000	6,9+2,8*L/100		
20.10.10	3,1+3,2*L/1000	2,6+3,2*L/1000	7,1+3,2*L/100		
20.12.10	3,4+3,5*L/1000	2,9+3,5*L/1000	7,4+3,5*L/100		
30.10.10	3,1+3,2*L/1000	2,6+3,2*L/1000	7,1+3,2*L/100		
30.12.10	3,4+3,5*L/1000	2,9+3,5*L/1000	7,4+3,5*L/100		
30.15.10	3,6+4,0*L/1000	3,1+4,0*L/1000	7,6+4,0*L/100		
30.15.13	3,7+5,0*L/1000	3,2+5,0*L/1000	7,7+5,0*L/100		
40.20.15	3,7+5,0*L/1000	3,2+5,0*L/1000	7,7+5,0*L/100		

7 Оформление результатов поверки

- 7.1 Результаты поверки оформляются протоколом, составленным в виде сводной таблицы результатов поверки по каждому пункту раздела 6 настоящей методики поверки.
- 7.2 При положительных результатах поверки, КИМ признается годной к применению и на нее выдается свидетельство о поверке установленной формы. Знак поверки наносится на свидетельство о поверке в виде наклейки и (или) поверительного клейма.
- 7.3 При отрицательных результатах поверки, КИМ признается непригодной к применению и на нее выдается извещение о непригодности установленной формы с указанием основных причин.

Руководитель отдела OOO «Автопрогресс-М»

М.А. Скрипка