ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Датчики состояния поверхности дорожного полотна «ДСПД»

Назначение средства измерений

Датчики состояния поверхности дорожного полотна «ДСПД» (далее – датчики «ДСПД») предназначены для дистанционных измерений температуры поверхности дорожного полотна, толщины слоя воды, снега, льда, смеси снега со льдом, жидкой грязи (слякоти) на поверхности дорожного полотна.

Описание средства измерений

Принцип действия датчиков «ДСПД» основан на зависимости интенсивности отраженного потока инфракрасного излучения от температуры поверхности дорожного полотна и толщины слоя воды, снега, льда, смеси снега со льдом, жидкой грязи (слякоти) на поверхности дорожного полотна.

В процессе измерений поток инфракрасного излучения от двух лазерных диодов направляется на дорожное полотно, отражается от него и принимается приемником. По соотношению интенсивности отраженных сигналов делается вывод о состоянии дорожного полотна и типе покрывающего слоя (вода, снег, лед, снег со льдом, жидкая грязь (слякоть). На основании типа покрывающего слоя и суммарной величины отраженного сигнала рассчитывается толщина слоя воды, снега, льда, снега со льдом, жидкой грязи (слякоти) на поверхности дорожного полотна, а также процентное содержание снега и льда в смеси снег/лед.

Температура поверхности дорожного полотна измеряется бесконтактным методом. Поток инфракрасного излучения, отраженный от поверхности дорожного полотна, принимается и преобразуется в электрический сигнал, пропорциональный температуре поверхности дорожного полотна. По результатам измерений толщины слоя воды, снега, льда, снега со льдом, жидкой грязи (слякоти) и температуры поверхности дорожного полотна микропроцессором рассчитывается необходимая концентрация противогололедного реагента. Все расчеты проводятся по алгоритмам, разработанным ООО «ОКБ «Бурстройпроект». Измеренные данные преобразуются в цифровой код и передаются на ПК или устройство сбора данных.

Конструктивно датчики «ДСПД» выполнены в виде компактного модуля, в корпусе которого размещены излучатели, приемник, пирометр, блок электроники и микропроцессор. Датчики «ДСПД» закрепляются на опоре при помощи кронштейна на высоте от 0,5 до 10 метров.

В датчиках «ДСПД» для защиты от неблагоприятных погодных условий реализованы функции: термостатирования, обогрева окна, оповещения о загрязненности оптики, компенсации дрожания опоры и устойчивой работа в непрерывном потоке автомобилей. При установке датчиков «ДСПД» проводится настройка по углу наклона.

Датчики «ДСПД» могут функционировать как автономно, так и в составе метеорологических станций. Измерения осуществляются непрерывно (круглосуточно), сообщения о проведенных измерениях передаются через определенные временные интервалы или по запросу.

Для обмена информацией используются последовательный интерфейс RS-485, Ethernet, радиомодем стандарта GSM. Датчики «ДСПД» имеют удаленный доступ через web-интерфейс.

Датчики «ДСПД» выпускаются в двух модификациях: «ДСПД» и «ДСПД-М». Модификации датчиков отличаются типом измерительных каналов.

Общий вид датчиков «ДСПД» представлен на рисунке 1.

Схема пломбирования датчиков «ДСПД» от несанкционированного доступа представлена на рисунке 2.

Таблица 1 – Измерительные каналы датчиков

Tuonnia 1 Tiomephi endidide kanasidi dari inkob	
Модификация датчиков	Каналы измерений
ДСПД	Канал измерений температуры поверхности дорожного полотна
	Канал измерений толщины слоя воды, льда, снега со льдом,
	жидкой грязи (слякоти) до 10 мм, снега до 20 мм.
ДСПД-М	Канал измерения температуры поверхности дорожного полотна
	Канал измерения толщины слоя воды, льда, снега со льдом,
	жидкой грязи (слякоти) до 10 мм, снега до 3000 мм.

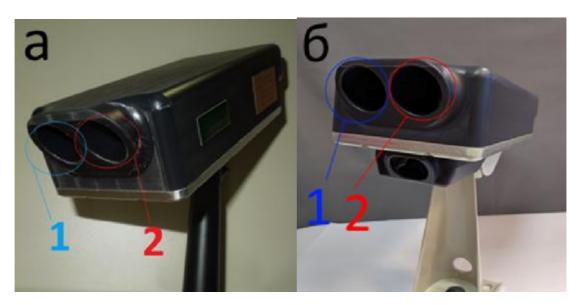


Рисунок 1 — Общий вид датчиков состояния поверхности дорожного полотна: a-«ДСПД», б-«ДСПД-М», 1-излучатели, 2-приемник.

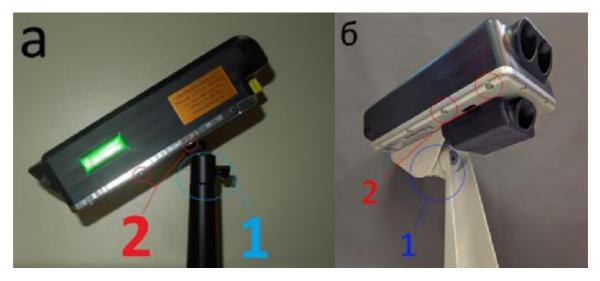


Рисунок 2 — Схема пломбирования датчиков состояния поверхности дорожного полотна: a-«ДСПД», 6-«ДСПД-М», 1-кронштейн, 2-пломбы (залитые винты)

Программное обеспечение

Датчики «ДСПД» имеют встроенное программное обеспечение «BURS-31». Встроенное ПО обеспечивает сбор, обработку и передачу данных на персональный компьютер, а также обеспечивает управление работой датчиков «ДСПД».

Уровень защиты программного обеспечения «средний» в соответствии с Р 50.2.077-2014. Влияние программного обеспечения учтено при нормировании метрологических характеристик датчиков «ДСПД».

Таблица 2 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	«BURS-31.hex»	
Номер версии (идентификационный номер) ПО, не ниже	2.0	
Цифровой идентификатор программного обеспечения	6D19591C	
(контрольная сумма исполняемого кода)	0D19391C	
Контрольная сумма приведена для указанной в таблице версии ПО по алгоритму CRC32		

Метрологические и технические характеристики

Таблица 3 – Метрологические характеристики

таолица 3 – метрологические характеристики				
Наименование характеристики	Значение			
Наименование модификаций	ДСПД	ДСПД-М		
Диапазон измерений температуры поверхности дорожного	от -50 до +70			
полотна, °С				
Пределы допускаемой абсолютной погрешности измерений				
температуры поверхности дорожного полотна, °С	± 0.8			
Диапазон измерений толщины слоя, мм				
- воды	от 0 де	o 10		
- снега	от 0 до 20	включ.		
- льда	от 0 де	o 10		
- снега со льдом	от 0 де	o 10		
- жидкой грязи (слякоти) от		o 10		
Пределы допускаемой абсолютной погрешности измерений				
толщины слоя, мм				
- воды	±0,			
- снега		,4		
- льда	±0,	,4		
- снега со льдом	±0,4			
- жидкой грязи (слякоти)	±0,4			
Диапазон измерений толщины слоя снега, мм	_	св. 20 до 3000		
Пределы допускаемой относительной погрешности измерений				
толщины снега в диапазоне св. 20 до 3000 мм, %	_	±5		

Таблица 4 – Основные технические характеристики

Наименование характеристики	Zuan	Значение	
Наименование модификаций	ДСПД	ДСПД-М	
Электрическое питание постоянный ток:			
- напряжение, В	от 42	до 60	
Потребляемая мощность, В А, не более			
- без подогрева	3	3	
- с подогревом	3	30	
Габаритные размеры, мм, не более			
- длина	227	227	
- ширина	98	98	
- высота	60	86	
Масса, кг, не более	1,25	1,35	
Средняя наработка на отказ, ч	100	10000	
Срок службы, лет, не менее	1	10	
Условия эксплуатации:			
- температура воздуха, °С	от -60 ,	до +70	
- относительная влажность, %	от 0 д	o 100	
- атмосферное давление, гПа	от 600 д	от 600 до 1100	

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации типографским методом и на корпус датчика «ДСПД» в виде фирменной этикетки.

Комплектность средства измерений

Таблица 5 – Комплектность датчиков «ДСПД»

Наименование	Обозначение	Количество
Датчик состояния поверхности дорожного	в зависимости от модификации	1 шт.
полотна «ДСПД»		
Руководство по эксплуатации	4431-002-70092073-2014 РЭ	1 экз.
Методика поверки	МП 2551-0207-2019	1 экз.

Поверка

осуществляется по документу МП 2551-0207-2019 «ГСИ. Датчики состояния поверхности дорожного полотна «ДСПД». Методика поверки», утвержденному ФГУП «ВНИИМ им. Д.И. Менделеева» 12.09.2019 года.

Основные средства поверки:

Термометр сопротивления эталонный ЭТС-100, регистрационный номер в Федеральном информационном фонде 19916-10.

Штангенциркуль ШЦ-I, регистрационный номер в Федеральном информационном фонде 260-05.

Дальномер лазерный Leica DISTO A5, регистрационный номер в Федеральном информационном фонде 30855-07.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к датчикам состояния поверхности дорожного полотна «ДСПД»

Технические условия ТУ 4431-002-70092073-2014 «Датчик состояния поверхности дорожного полотна «ДСПД»

Изготовитель

Общество с ограниченной ответственностью «ОКБ Бурстройпроект»

(ООО «ОКБ Бурстройпроект»)

ИНН 7723345578

Адрес: 125315, г. Москва, Ленинградский проспект, д. 80, корпус Γ , тех. этаж, помещение XII, ком. 16,20

Телефон: (495) 759-01-40 Web-сайт: <u>www.burstroy.ru</u> E-mail: info@burstroy.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологии им. Д.И. Менделеева»

Адрес: 190005, г. Санкт-Петербург, Московский пр., 19

Телефон: (812) 251-76-01 Факс: (812) 713-01-14 Web-сайт: www.vniim.ru E-mail: info@vniim.ru

Регистрационный номер RA.RU.311541 в Реестре аккредитованных лиц в области обеспечения единства измерений Росаккредитации.

М.п.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

	А.В. Кулешов
« »	2019 г.