УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «19» ноября 2021 г. № 2601

Регистрационный № 83783-21

Лист № 1 Всего листов 10

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ПС ТЕПЛИЧНАЯ

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ПС ТЕПЛИЧНАЯ (далее – АИИС КУЭ) предназначена для измерений приращений активной и реактивной электрической энергии, потребленной и переданной за установленные интервалы времени, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, двухуровневую систему с централизованным управлением и распределенной функцией измерений.

АИИС КУЭ состоит из двух уровней:

1-й уровень — измерительно-информационные комплексы (ИИК), включающие в себя измерительные трансформаторы напряжения (ТН), измерительные трансформаторы тока (ТТ), многофункциональные счетчики активной и реактивной электрической энергии (далее — счетчики), вторичные измерительные цепи и технические средства приема-передачи данных;

2-й уровень — информационно-вычислительный комплекс (ИВК) выполненный на основе серверного оборудования промышленного исполнения и работающего под управлением программного обеспечения ПК «Энергосфера», устройство синхронизации времени. ИВК включает в себя каналообразующую аппаратуру, сервер сбора данных и автоматизированные рабочие места (АРМ).

ИИК, ИВК, технические средства приема-передачи данных и линии связи образуют измерительные каналы (ИК).

Первичные токи напряжения трансформируются измерительными И трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям измерительных цепей поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные аналоговых значения преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной, реактивной и полной мощности, которые усредняются за период 0,02 с. Измерительная информация на выходе счетчика без учета коэффициента трансформации:

- активная и реактивная электрическая энергия, как интеграл по времени от средней за период 0.02 с активной и реактивной мощности, соответственно, вычисляемая для интервалов времени 30 минут;
- средняя на интервале времени 30 минут активная и реактивная электрическая мошность.

ИВК обеспечивает выполнение следующих функций:

периодический (один раз в сутки) и по запросу автоматический сбор результатов измерений электрической энергии;

автоматический сбор данных о состоянии средств измерений и состоянии объектов измерений;

хранение не менее 3,5 лет результатов измерений и журналов событий;

автоматический сбор результатов измерений после восстановления работы каналов связи, восстановления питания:

перемножение результатов измерений, хранящихся в базе данных, на коэффициенты трансформации TT и TH;

формирование отчетных документов;

ведение журнала событий с фиксацией изменений результатов измерений, осуществляемых в ручном режиме, изменений коэффициентов ТТ и ТН, синхронизации (коррекции) времени с указанием времени до и после синхронизации (коррекции), пропадания питания, замены счетчика, событий, отраженных в журналах событий счетчиков;

конфигурирование и параметрирование технических средств ИВК;

сбор и хранение журналов событий счетчиков;

ведение журнала событий ИВК;

синхронизацию времени в сервере с возможностью коррекции времени в счетчиках электроэнергии;

аппаратную и программную защиту от несанкционированного изменения параметров и любого изменения данных;

самодиагностику с фиксацией результатов в журнале событий.

ИВК осуществляет автоматический обмен (передачу и получение) результатами измерений и данными коммерческого учета электроэнергии с субъектами оптового рынка электрической энергии и мощности (ОРЭМ), с другими АИИС КУЭ утвержденного типа, а также с инфраструктурными организациями ОРЭМ, в том числе: АО «АТС», АО «СО ЕЭС». Обмен результатами измерений и данными коммерческого учета электроэнергии между информационными системами субъектов оптового рынка и инфраструктурными организациями ОРЭМ осуществляется по электронной почте в виде электронных документов ХМL в формате 80020, 80030, 80040, 51070 и др., заверенных электронной цифровой подписью.

Информационные каналы связи в АИИС КУЭ построены следующим образом:

посредством интерфейса RS-485 от счетчиков до коммуникатора;

посредством сети Интернет через провайдера и оператора сотовой связи GSM для передачи данных от коммуникатора до ИВК;

посредством сети Интернет через провайдера (основной канал) и сети сотовой связи GSM (резервный канал) для передачи данных от ИВК во внешние системы;

посредством сети Интернет через провайдера для передачи данных с сервера баз данных на АРМ.

В АИИС КУЭ на функциональном уровне выделена система обеспечения единого времени (СОЕВ), включающая в себя часы сервера и счетчиков. Сервер получает шкалу времени UTC(SU) в постоянном режиме от устройства синхронизации времени УСВ-2. УСВ-2 осуществляет прием и обработку сигналов GPS/ГЛОНАСС по которым осуществляет постоянную синхронизацию собственных часов со шкалой времени UTC(SU), часов сервера с периодичностью не реже 1 раза в сутки. При каждом опросе счетчиков, сервер определяет поправку часов счетчиков и, в случае, если поправка часов счетчиков превышает по ± 2 с (параметр настраиваемый), то формирует команду синхронизации. Журналы событий счетчиков и сервера отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции и (или) величины коррекции времени, на которую было скорректировано устройство.

Нанесение знака поверки на средство измерений не предусмотрено. Заводской номер в виде цифро-буквенного обозначения наносится на формуляр.

Программное обеспечение

В ИВК используется программное обеспечение ПК «Энергосфера». Программное обеспечение имеет уровень защиты от непреднамеренных и преднамеренных изменений в соответствии с Р 50.2.077-2014 — «средний». Идентификационные признаки метрологически значимой части ПО АИИС КУЭ приведены в таблице 1.

Таблица 1 – Идентификационные признаки метрологически значимой части ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование программного обеспечения	pso_metr.dll
Номер версии (идентификационный номер) программного обеспечения	1.1.1.1
Цифровой идентификатор программного обеспечения (рассчитываемый по алгоритму MD5)	cbeb6f6ca69318bed976e08a2bb7814b

Метрологические и технические характеристики

Состав измерительных каналов (ИК) и их основные метрологические и технические характеристики приведены в таблицах 2, 3, 4 и 5.

Таблица 2 – Состав ИК

№ ИК	Наименование ИК	TT	ТН	Счетчик	УССВ, ИВК
1	2	3	4	5	6
1	ПС 220 кВ	ТЛО-10	ЗНОЛП-ЭК-10	СЭТ-4TM.03M.01	УСВ-2
	«Тепличная»,	,	Кл.т. 0,5	Кл.т. 0,5S/1	Рег. № 41681-
	3РУ-10 кВ, 1	$K_{TT} = 300/5$	$K_{TH} = 10500: \sqrt{3}/100: \sqrt{3}$	Рег. № 31857-11	10;
	СШ, яч. №3	Рег. № 28402-09	Рег. № 47583-11		сервер ИВК ПК
					«Энергосфера»

Продолжение таблицы 2

1	должение таоли 2	3	4	5	6	
	_	_			U	
2	ПС 220 кВ	ТЛО-10	ЗНОЛП-ЭК-10	CЭT-4TM.03M.01		
	«Тепличная»,	Кл.т. 0,5S	Кл.т. 0,5	Кл.т. 0,5\$/1		
	3РУ-10 кВ, 1	$K_{TT} = 600/5$	$K_{TH} = 10500: \sqrt{3}/100: \sqrt{3}$	Рег. № 31857-11		
	СШ, яч. №5	Рег. № 28402-09	Рег. № 47583-11			
3	ПС 220 кВ	ТЛО-10	3НОЛП-ЭК-10	CЭT-4TM.03M.01		
	«Тепличная»,	Кл.т. 0,5S	Кл.т. 0,5	Кл.т. 0,5S/1		
	3РУ-10 кВ, 1	$K_{TT} = 600/5$	$K_{TH} = 10500: \sqrt{3}/100: \sqrt{3}$	Рег. № 31857-11		
	СШ, яч. №7	Рег. № 28402-09	Рег. № 47583-11			
4	ПС 220 кВ	ТЛО-10	ЗНОЛП-ЭК-10	CЭT-4TM.03M.01		
	«Тепличная»,	Кл.т. 0,5S	Кл.т. 0,5	Кл.т. 0,5S/1		
	3РУ-10 кВ, 1	$K_{TT} = 300/5$	$K_{TH} = 10500: \sqrt{3}/100: \sqrt{3}$	Рег. № 31857-11		
	СШ, яч. №9	Рег. № 25433-11	Рег. № 47583-11			
5	ПС 220 кВ	ТЛО-10	ЗНОЛП-ЭК-10	Меркурий 234		
	«Тепличная»,	Кл.т. 0,5S	Кл.т. 0,5	ARTM-00PB.R		
	3РУ-10 кВ, 1	$K_{TT} = 300/5$	$K_{TH} = 10500v3/100v3$	Кл.т. 0,5S/1		
	СШ, яч. №11	Рег. № 25433-11	Рег. № 47583-11	Рег. № 48266-11		
6	ПС 220 кВ	ТЛО-10	ЗНОЛП-ЭК-10	СЭТ-4TM.03M.01		
	«Тепличная»,	Кл.т. 0,5S	Кл.т. 0,5	Кл.т. 0,5S/1	УСВ-2	
	3РУ-10 кВ, 1	$K_{TT} = 600/5$	$K_{TH} = 10500: \sqrt{3}/100: \sqrt{3}$	Рег. № 31857-11	Рег. № 41681-	
	СШ, яч. №19	Рег. № 25433-11	Рег. № 47583-11		10;	
7	ПС 220 кВ	ТЛО-10	ЗНОЛП-ЭК-10	СЭТ-4ТМ.03М.01	сервер ИВК	
	«Тепличная»,	Кл.т. 0,5S	Кл.т. 0,5	Кл.т. 0,5S/1	ПК	
	3РУ-10 кВ, 1	$K_{TT} = 600/5$	$K_{TH} = 10500: \sqrt{3}/100: \sqrt{3}$	Рег. № 31857-11	«Энергосфера»	
	СШ, яч. №21	Рег. № 25433-11	Рег. № 47583-11			
8	ПС 220 кВ	ТЛО-10	ЗНОЛП-ЭК-10	СЭТ-4ТМ.03М.01		
	«Тепличная»,	Кл.т. 0,5S	Кл.т. 0,5	Кл.т. 0,5S/1		
	3РУ-10 кВ, 1	$K_{TT} = 300/5$	$K_{TH} = 10500: \sqrt{3}/100: \sqrt{3}$	Рег. № 31857-11		
	СШ, яч. №23	Рег. № 25433-11	Рег. № 47583-11			
9	ПС 220 кВ	ТЛО-10	ЗНОЛП-ЭК-10	СЭТ-4ТМ.03М.01		
	«Тепличная»,	Кл.т. 0,5S	Кл.т. 0,5	Кл.т. 0,5S/1		
	ЗРУ-10 кВ, 1	$K_{TT} = 300/5$	$K_{TH} = 10500: \sqrt{3}/100: \sqrt{3}$	Рег. № 31857-06		
	СШ, яч. №25	Рег. № 25433-11	Рег. № 47583-11			
10	ПС 220 кВ	ТЛО-10	ЗНОЛП-ЭК-10	СЭТ-4ТМ.03М.01		
	«Тепличная»,	Кл.т. 0,5S	Кл.т. 0,5	Кл.т. 0,5S/1		
	3РУ-10 кВ, 1	$K_{TT} = 650/5$	$K_{TH} = 10500: \sqrt{3}/100: \sqrt{3}$	Рег. № 31857-06		
	СШ, яч. №27	Рег. № 25433-11	Рег. № 47583-11			
11	ПС 220 кВ	ТОЛ-НТЗ	3НОЛП-НТЗ-10	СЭТ-4TM.03M.01		
	«Тепличная»,	Кл.т. 0,5S	Кл.т. 0,5	Кл.т. 0,5S/1		
	3РУ-10 кВ, 2	$K_{TT} = 600/5$	$K_{TH} = 10000: \sqrt{3}/100: \sqrt{3}$	Рег. № 31857-06		
	СШ, яч. №4	Рег. № 69606-17	Рег. № 51676-12			

Продолжение таблицы 2

1100	должение табли					
1	2	3	4	5	6	
12	ПС 220 кВ	ТОЛ-НТЗ	3НОЛП-НТЗ-10	СЭТ-4TM.03M.01		
	«Тепличная»,	Кл.т. 0,5S	Кл.т. 0,5	Кл.т. 0,5S/1		
	3РУ-10 кВ, 2	$K_{TT} = 600/5$	$K_{TH} = 10000: \sqrt{3}/100: \sqrt{3}$	Рег. № 31857-11		
	СШ, яч. №6	Рег. № 69606-17	Рег. № 51676-12			
13	ПС 220 кВ	ТОЛ-НТЗ	3НОЛП-НТЗ-10	СЭТ-4TM.03M.01		
	«Тепличная»,	Кл.т. 0,5S	Кл.т. 0,5	Кл.т. 0,5Ѕ/1		
	3РУ-10 кВ, 2	$K_{TT} = 300/5$	$K_{TH} = 10000: \sqrt{3}/100: \sqrt{3}$	Рег. № 31857-11		
	СШ, яч. №8	Рег. № 69606-17	Рег. № 51676-12			
14	ПС 220 кВ	ТОЛ-НТЗ	3НОЛП-НТЗ-10	СЭТ-4ТМ.03М.01		
	«Тепличная»,	Кл.т. 0,5Ѕ	Кл.т. 0,5	Кл.т. 0,5S/1		
	3РУ-10 кВ, 2	$K_{TT} = 300/5$	$K_{TH} = 10000: \sqrt{3}/100: \sqrt{3}$	Рег. № 31857-11		
	СШ, яч. №10	Рег. № 69606-17	Рег. № 51676-12			
15	ПС 220 кВ	ТОЛ-НТЗ	3НОЛП-НТЗ-10	СЭТ-4TM.03M.01		
	«Тепличная»,	Кл.т. 0,5S	Кл.т. 0,5	Кл.т. 0,5Ѕ/1		
	3РУ-10 кВ, 2	$K_{TT} = 300/5$	$K_{TH} = 10000: \sqrt{3}/100: \sqrt{3}$	Рег. № 31857-11		
	СШ, яч. №12	Рег. № 69606-17	Рег. № 51676-12			
16	ПС 220 кВ	ТОЛ-НТЗ	3НОЛП-НТЗ-10	СЭТ-4TM.03M.01		
	«Тепличная»,	Кл.т. 0,5S	Кл.т. 0,5	Кл.т. 0,5S/1		
	3РУ-10 кВ, 2	$K_{TT} = 600/5$	$K_{TH} = 10000: \sqrt{3}/100: \sqrt{3}$	Рег. № 31857-11	УСВ-2	
	СШ, яч. №20	Рег. № 69606-17	Рег. № 51676-12		Рег. № 41681-10;	
17	ПС 220 кВ	ТОЛ-НТЗ	3НОЛП-НТЗ-10	СЭТ-4TM.03M.01	сервер ИВК ПК	
	«Тепличная»,	Кл.т. 0,5S	Кл.т. 0,5	Кл.т. 0,5S/1	«Энергосфера»	
	3РУ-10 кВ, 2	$K_{TT} = 600/5$	$KTH = 10000: \sqrt{3}/100: \sqrt{3}$	Рег. № 31857-11	1	
	СШ, яч. №22	Рег. № 69606-17	Рег. № 51676-12			
18	ПС 220 кВ	ТОЛ-НТЗ	3НОЛП-НТЗ-10	СЭТ-4ТМ.03М.01		
	«Тепличная»,	Кл.т. 0,5S	Кл.т. 0,5	Кл.т. 0,5S/1		
	3РУ-10 кВ, 2	$K_{TT} = 600/5$	$KTH = 10000: \sqrt{3}/100: \sqrt{3}$	Рег. № 31857-11		
	СШ, яч. №24	Рег. № 69606-17	Рег. № 51676-12			
19	ПС 220 кВ	ТОЛ-НТЗ	3НОЛП-НТЗ-10	СЭТ-4TM.03M.01		
	«Тепличная»,	Кл.т. 0,5S	Кл.т. 0,5	Кл.т. 0,5S/1		
	3РУ-10 кВ, 2	$K_{TT} = 300/5$	$KTH = 10000: \sqrt{3}/100: \sqrt{3}$	Рег. № 31857-11		
	СШ, яч. №26	Рег. № 69606-17	Рег. № 51676-12			
20	ПС 220 кВ	ТОЛ-НТЗ	3НОЛП-НТЗ-10	СЭТ-4TM.03M.01		
	«Тепличная»,	Кл.т. 0,5S	Кл.т. 0,5	Кл.т. 0,5S/1		
	3РУ-10 кВ, 2	$K_{TT} = 300/5$	$K_{TH} = 10000: \sqrt{3}/100: \sqrt{3}$	Рег. № 31857-11		
	СШ, яч. №28	Рег. № 69606-17	Рег. № 51676-12			
21	ПС 220 кВ	ТОЛ-НТЗ	3НОЛП-НТЗ-10	СЭТ-4TM.03M.01		
	l í	Кл.т. 0,5S	1	Кл.т. 0,5Ѕ/1		
	·	$K_{TT} = 300/5$	$K_{TH} = 10000: \sqrt{3}/100: \sqrt{3}$	Рег. № 31857-11		
	СШ, яч. №30	Рег. № 69606-17	Рег. № 51676-12			

Окончание таблицы 2

1	2	3	4	5	6
22	ПС 220 кВ	ТОЛ-НТЗ	3НОЛП-НТЗ-10	СЭТ-4TM.03M.01	УСВ-2
	«Тепличная»,	Кл.т. 0,5S	Кл.т. 0,5		Рег. № 41681-10;
	3РУ-10 кВ, 2	$K_{TT} = 600/5$	$K_{TH} = 10000: \sqrt{3}/100: \sqrt{3}$	Рег. № 31857-11	сервер ИВК ПК
	СШ, яч. №32	Рег. № 69606-17	Рег. № 51676-12		«Энергосфера»

Примечания:

- 1. Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2,при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблицах 3 и 4 метрологических характеристик.
- 2. Допускается замена устройства синхронизации времени на аналогичные утвержденных типов. Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке, вносят изменения в эксплуатационные документы. Технический акт хранится совместно с эксплуатационными документами АИИС КУЭ как их неотъемлемая часть

Таблица 3 – Метрологические характеристики ИК в нормальных условиях применения

		$I_2 \leq I_1$	изм<І 5	I ₅ ≤ I и	_{зм} <i 20<="" th=""><th>I₂₀≤ I и</th><th></th><th>I₁₀₀≤ I и</th><th></th></i>	I ₂₀ ≤ I и		I ₁₀₀ ≤ I и	
ИК №№	cos φ	$\delta_{Wo}{}^A~\%$	$\delta_{\mathrm{Wo}}^{\mathrm{P}}$ %	$\delta_{Wo}{}^A~\%$	$\delta_{\mathrm{Wo}}^{\mathrm{P}}$ %	$\delta_{Wo}{}^A\%$	$\delta_{\mathrm{Wo}}^{\mathrm{P}}$ %	$\delta_{Wo}{}^A~\%$	$\delta_{\mathrm{Wo}}^{\mathrm{P}}$ %
1, 2, 3, 4, 5, 6, 7,	0,50	±4,9	±2,7	±3,1	±2,1	±2,3	±1,5	±2,3	±1,5
8, 9, 10, 11, 12,	0,80	±2,7	±4,1	±1,9	±2,9	±1,4	±2,1	±1,4	±2,1
13, 14, 15, 16,	0,87	±2,4	±5,0	±1,8	±3,3	±1,2	±2,4	±1,2	±2,4
17, 18, 19, 20,	1,00	±1,9	-	±1,2	-	±1,0	-	±1,0	-
21, 22									

Таблица 4 – Метрологические характеристики ИК в рабочих условиях применения

ИК №№		I ₂ ≤ I _{изм} <i <sub="">5</i>		$I_5 \le I_{изм} < I_{20}$		I ₂₀ ≤ I _{изм} <i <sub="">100</i>		I ₁₀₀ ≤ I _{изм} ≤I ₁₂₀	
NIK MEME	cos φ	$\delta_W{}^A$ %	δ_{W}^{P} %	$\delta_W{}^A$ %	δ_{W}^{P} %	$\delta_W{}^A$ %	$\delta_{\mathrm{W}}{}^{\mathrm{P}}$ %	$\delta_W{}^A$ %	$\delta_{\mathrm{W}}^{\mathrm{P}}$ %
1, 2, 3, 4, 5, 6, 7,	0,50	±5,1	±3,7	±3,4	±3,4	±2,6	±3,1	±2,6	±3,1
8, 9, 10, 11, 12,	0,80	±3,0	±4,9	±2,3	±3,9	±1,9	±3,4	±1,9	±3,4
13, 14, 15, 16,	0,87	±2,8	±5,6	±2,2	±4,3	±1,8	±3,6	±1,8	±3,6
17, 18, 19, 20,	1,00	±2,3	-	±1,4	-	±1,3	-	±1,3	-
21, 22									

Пределы допускаемого значения поправки часов, входящих в СОЕВ, относительно шкалы времени UTC(SU) ±5 с

Окончание таблицы 4

Примечание:

 I_2 – сила тока 2% относительно номинального тока TT;

 I_5 – сила тока 5% относительно номинального тока TT;

 I_{20} – сила тока 20% относительно номинального тока TT;

 I_{100} — сила тока 100% относительно номинального тока TT;

 I_{120} – сила тока 120% относительно номинального тока TT;

 $I_{\text{изм}}$ —силы тока при измерениях активной и реактивной электрической энергии относительно номинального тока TT;

 $\delta_{Wo}{}^{A}$ — доверительные границы допускаемой основной относительной погрешности при вероятности P=0,95 при измерении активной электрической энергии;

 δ_{Wo}^{P} — доверительные границы допускаемой основной относительной погрешности при вероятности P=0.95 при измерении реактивной электрической энергии;

δ_W^A – доверительные границы допускаемой относительной погрешности при вероятности P=0,95 при измерении активной электрической энергии в рабочих условиях применения;

 δ_W^P – доверительные границы допускаемой относительной погрешности при вероятности P=0,95 при измерении реактивной электрической энергии в рабочих условиях применения.

Таблица 5 – Основные технические характеристики ИК

таолица 3 – Основные технические характеристики итс	
Наименование характеристики	Значение
1	2
Количество измерительных каналов	22
Нормальные условия:	
$-$ Tok, $\%$ ot I_{hom}	от (2)5 до 120
– напряжение, % от U _{ном}	от 99 до 101
 коэффициент мощности соѕ φ 	0,5 инд 1,0 - 0,8 емк.
температура окружающего воздуха для счетчиков, °С:	от +21 до +25
Рабочие условия эксплуатации:	
допускаемые значения неинформативных параметров:	
$-$ ток, $\%$ от $I_{\text{ном}}$	от (2)5 до 120
 напряжение, % от U_{ном} 	от 90 до 110
 коэффициент мощности соѕ ф 	0,5 инд 1,0 - 0,8 емк.
температура окружающего воздуха, °С:	
– для TT и TH	от -40 до +40
для счетчиков	от 0 до +40
для сервера	от +15 до +25
Период измерений активной и реактивной средней мощности и	30
приращений электрической энергии, минут	
Период сбора данных со счетчиков электрической энергии, минут	30
Формирование XML-файла для передачи внешним системам	Автоматическое

Окончание таблицы 5

1	2
Формирование базы данных с указанием времени измерений и	Автоматическое
времени поступления результатов	
Глубина хранения информации	
Счетчики:	
 тридцатиминутный профиль нагрузки в двух направлениях, 	
сутки, не менее	100
Сервер ИВК:	
 хранение результатов измерений и информации состояний 	
средств измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
 - резервный сервер с установленным специализированным ПО;
- резервирование каналов связи между уровнями ИИК и ИВК и между ИВК и внешними системами субъектов ОРЭМ, а также с инфраструктурными организациями ОРЭМ.

Ведение журналов событий:

- -счётчика, с фиксированием событий:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике.
- ИВК, с фиксированием событий:
 - даты начала регистрации измерений;
 - перерывы электропитания;
 - программные и аппаратные перезапуски;
 - установка и корректировка времени;
 - переход на летнее/зимнее время;
 - нарушение защиты ИВК;
- отсутствие/довосстановление данных с указанием точки измерений и соответствующего интервала времени.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - счётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера;
- защита информации на программном уровне:
 - результатов измерений при передаче информации (возможность использования цифровой подписи);
 - установка пароля на счетчик;
 - установка пароля на сервер.

Знак утверждения типа

наносится типографским способом на титульный лист формуляра 123.411711.004.ФО «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ПС ТЕПЛИЧНАЯ. Формуляр».

Комплектность средства измерений

Комплектность АИИС КУЭ приведена в таблице 6.

Таблица 6 – Комплектность АИИС КУЭ

Наименование	Обозначение	Количество, шт.
Трансформаторы тока	ТЛО-10	30
Трансформаторы тока	ТОЛ-НТЗ	36
Трансформаторы напряжения	ЗНОЛП-ЭК-10	3
Трансформаторы напряжения	3НОЛП-НТ3-10	3
Счетчики	CЭT-4TM.03M.01	21
Счетчики	Меркурий 234 ARTM-00PB.R	1
ИВК	Энергосфера	1
COEB	YCB-2	1
Система автоматизированная	123.411711.004.ФО	1
информационно-измерительная		
коммерческого учета		
электроэнергии ПС		
ТЕПЛИЧНАЯ. Формуляр		

Сведения о методиках (методах) измерений

Методика измерений изложена в документе «Методика измерений электрической энергии с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии ПС ТЕПЛИЧНАЯ» Методика измерений аттестована Западно-Сибирским филиалом ФГУП «ВНИИФТРИ». Аттестат аккредитации Западно-Сибирского филиала ФГУП «ВНИИФТРИ» по аттестации методик (методов) измерений и метрологической экспертизе № RA.RU.311735 от 19.07.2016 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии ПС ТЕПЛИЧНАЯ

ГОСТ Р 8.596-2002 Метрологическое обеспечение измерительных систем. Основные положения.

Изготовитель

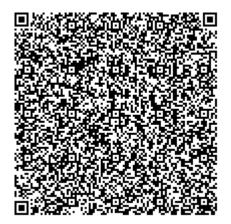
Общество с ограниченной ответственностью «ПС Тепличная» (ООО «ПС Тепличная»)

ИНН 5406814070

Адрес: 630099, Российская Федерация, г. Новосибирск, ул. Орджоникидзе, 40, офис 4603

Телефон: +7 (383) 349-93-96

Испытательный центр


Западно-Сибирский филиал Федерального государственного унитарного предприятия «Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений» (Западно-Сибирский филиал ФГУП «ВНИИФТРИ»)

Адрес: 630004, Российская Федерация, г. Новосибирск, проспект Димитрова, д. 4

Телефон (факс): +7 (383) 210-08-14, +7 (383) 210-13-60

E-mail: director@sniim.ru

Аттестат аккредитации Западно-Сибирского филиала ФГУП «ВНИИФТРИ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.310556 от $14.01.2015 \, \Gamma$.

