ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «ГосМКБ Радуга им. А.Я. Березняка»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «ГосМКБ Радуга им. А.Я. Березняка» (далее по тексту – АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную автоматизированную систему с централизованным управлением и распределенной функцией измерения, состоящей из шести измерительных каналов (ИК).

ИК АИИС КУЭ включают в себя следующие уровни.

Первый уровень – измерительно-информационный комплекс включает в себя измерительные трансформаторы напряжения (TH), измерительные трансформаторы тока (TT), многофункциональные счетчики активной и реактивной электрической энергии (счетчики) и вторичные измерительные цепи.

Второй уровень – информационно-вычислительный комплекс (ИВК), включает в себя сервер на базе Supermicro SuperServer SYS-2027-TR-D70RF 2U Twin заводской номер S10581624217074 (резервный S10581624217076), систему обеспечения единого времени (СОЕВ) с приемником сигналов точного времени (устройства синхронизации времени TSP-901/485U) на базе комплекса информационно-измерительного МУР 1001, регистрационный номер в Федеральном информационном фонде 24343-08 (Рег. № 24343-08), заводской номер 030017, технические средства приема-передачи данных, каналы связи для обеспечения информационного взаимодействия между уровнями системы, коммутационное оборудование.

Второй уровень обеспечивает выполнение следующих функций:

- синхронизацию шкалы времени ИВК;
- сбор информации (результаты измерений, журнал событий);
- обработку данных и их архивирование;
- хранение информации в базе данных сервера.

АЙИС КУЭ включает в себя автоматизированные рабочие места (АРМ) на базе персональных компьютеров (ПК); каналообразующую аппаратуру; средства связи и передачи данных.

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на измерительные входы счетчиков электроэнергии. В счетчиках мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессорах счетчиков вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности, которые усредняются за 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение вычисленных мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков при помощи технических средств приемапередачи данных поступает на входы сервера ИВК, где производится сбор и хранение результатов измерений.

Сервер автоматически проводит сбор результатов измерений со счетчиков электрической энергии (один раз в 30 минут) по проводным линиям связи (интерфейс RS-485).

На верхнем — втором уровне системы, выполняется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление справочных и отчетных документов.

Один раз в сутки сервер ИВК АИИС КУЭ автоматически формирует файл с результатами измерений в ХМL-формате и передает его средствами электронной почты во внешние организации. Передача файла с результатами измерений для размещения в программно-аппаратный комплекс (ПАК) АО «АТС» производится по электронной почте с автоматизированного рабочего места (АРМ) субъекта оптового рынка. Каналы связи не вносят дополнительных погрешностей в измеренные значения энергии и мощности, которые передаются от счетчиков в ИВК, поскольку используется цифровой метод передачи данных.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ). Для синхронизации шкалы времени в системе в состав ИВК входит устройство синхронизации системного времени (УССВ) с приемником сигналов точного времени типа TSP-901/485U и антенной Ttimble GPS Antenna. Устройство синхронизации времени УССВ обеспечивает автоматическую синхронизацию часов ИВК, при превышении порога ±1 с происходит коррекция шкалы времени ИВК. Сличение шкалы времени сервера ИВК и шкалы времени комплекса информационно-измерительного МУР 1001 происходит ежесекундно. Шкалы времени счетчиков синхронизируются от шкалы времени ИВК с периодичностью один раз в 30 минут, коррекция шкал времени счетчиков проводится при расхождении шкалы времени счетчиков и ИВК более чем на ±1 с.

Взаимодействие между уровнями АИИС КУЭ осуществляется по проводным каналам связи.

Программное обеспечение

В состав программного обеспечения (ПО) АИИС КУЭ входят ПО счетчиков, ПО устройства синхронизации времени, ПО сервера ИВК на основе пакета программ версии не ниже $4.0~\Pi K$ «АРГО: Энергоресурсы».

Идентификационные данные ПО ПК «АРГО: Энергоресурсы», установленного в АИИС КУЭ, приведены в таблице 1.

): Энергоресурсы»

Идентификационные данные (признаки)	Значение		
Идентификационное наименование ПО	ПК «АРГО: Энергоресурсы»	Программный модуль Синхронизация времени	
Номер версии (идентификационный номер) ПО	4.17	2.2.7.246	
Цифровой идентификатор ПО (MD5)	8312d0ace5796c25b5561da5db45d a1e	a71584f56c55b4712c96bce79e 35eb81	
Другие идентификационные данные	PowerDevices.dll	TwSynClock.exe	

ПО ИВК «АРГО: Энергоресурсы» не влияет на метрологические характеристики ИК АИИС КУЭ, указанные в таблице 3.

Уровень защиты программного обеспечения «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Компонентный состав ИК АЙИС КУЭ и их основные характеристики приведены в таблице 2.

Метрологические характеристики ИК АИИС КУЭ приведены в таблице 3.

Таблица 2 – Состав ИК АИИС КУЭ

1 40,11	ица 2 – Состав ИК АИ	_	остав измерительн	гав измерительных каналов			
№ ИК	Наименование ИК	Трансформатор тока	Трансформатор напряжения	Счетчик электрической энергии	Сервер		
1	2	3	4	5	6		
1	ПС 110/10/6 кВ "Залесье ІІ" № 739, РУ 10 кВ, 1СШ 10 кВ, Ф-18	ТПЛ-10УЗ кл.т 0,5 Ктт = 30/5 Зав. № 52 106 Зав. № 52292 Рег. № 1276-59	НТМИ-10 кл.т 0,5 Ктн = 10000/100 Зав. № 1511вб328 Рег. № 2611-70	3EBC 353 AR- TQXJDN/iR7 кл.т 0,5S/1,0 Зав. № 7025116 Рег. № 53919-13	Supermicro SuperServer SYS-2027- TR-D70RF		
2	ПС 110/10/6 кВ "Залесье II" № 739, РУ 10 кВ, 1СШ 10 кВ, Ф-19	ТПЛ-СЭЩ-10 кл.т 0,5S Ктт = 1500/5 Зав. № 00068-17; 00066-17; 00067-17 Per. № 54717-13	НТМИ-10 кл.т 0,5 Ктн = 10000/100 Зав. № 1511вб328 Рег. № 2611-70	3EBC 353 AR- TQXJDN/iR7 кл.т 0,5S/1,0 Зав. № 8409098 Рег. № 53919-13	Supermicro SuperServer SYS-2027- TR-D70RF		
3	ПС 110/10/6 кВ "Залесье II" № 739, РУ 10 кВ, 1СШ 10 кВ, Ф-30	ТПЛ-СЭЩ-10 кл.т 0,5S Ктт = 200/5 Зав. № 00596-16; 00595-16 Рег. № 54717-13	НТМИ-10 кл.т 0,5 Ктн = 10000/100 Зав. № 1511вб328 Рег. № 2611-70	3EBC 353 AR- TQXJDN/iR7 кл.т 0,5S/1,0 Зав. № 8409032 Рег. № 53919-13	Supermicro SuperServer SYS-2027- TR-D70RF		
4	ПС 110/10/6 кВ "Залесье II" № 739, РУ 10 кВ, 1СШ 10 кВ, Ф-34	ТПЛ-СЭЩ-10 кл.т 0,5S Ктт = 200/5 Зав. № 00603-16; 00598-16 Рег. № 54717-13	НТМИ-10 кл.т 0,5 Ктн = 10000/100 Зав. № 1511вб328 Рег. № 2611-70	3EBC 353 AR- TQXJDN/iR7 кл.т 0,5S/1,0 Зав. № 8409069 Рег. № 53919-13	Supermicro SuperServer SYS-2027- TR-D70RF		

Продолжение таблицы 2

1	2	3	4	5	6
5	ПС 110/10/6 кВ "Залесье ІІ" № 739, РУ 10 кВ, 2СШ 10 кВ, Ф-53	ТОЛ-СЭЩ кл.т 0,5S Ктт = 100/5 Зав. № 08930-15; 08936-15; 00937-15 Per. № 51623-12	НАЛИ-СЭЩ кл.т 0,5 Ктн = 10000/100 Зав. № 0263-15 Рег. № 51621-12	3EBC 353 AR- TQXJDN/iR7 кл.т 0,5S/1,0 Зав. № 8409096 Рег. №53919-13	Supermicro SuperServer SYS-2027- TR-D70RF
6	ПС 110/10/6 кВ "Залесье ІІ" № 739, РУ 10 кВ, 2СШ 10 кВ, Ф-54	ТОЛ-СЭЩ кл.т 0,5S Ктт = 1500/5 Зав. № 09050-15; 09051-15; 09049-15 Per. № 51623-12	НАЛИ-СЭЩ кл.т 0,5 Ктн = 10000/100 Зав. № 0263-15 Рег. №51621-12	3EBC 353 AR- TQXJDN/iR7 кл.т 0,5S/1,0 Зав. № 8409026 Рег. №53919-13	Supermicro SuperServer SYS-2027- TR-D70RF

Таблица 3 - Метрологические характеристики АИИС КУЭ

Таблица 3 - Метрологические характеристики АИИС КУЭ								
		Метрологические характеристики ИК (активная энергия)						
Номер ИК	Диапазон значений силы тока	Основная относительная погрешность ИК, $(\pm\delta)$,			Относительная погрешность ИК в рабочих условиях эксплуатации, (±δ), %			
		cos φ = 1,0	cos φ = 0,8	cos φ = 0,5	cos φ = 1,0	cos φ = 0,8	$\cos \varphi$ = 0,5	
1	I ₁₍₂₎ %£I _{изм} <i <sub="">5 %</i>	-	-	-	-	-	-	
Счетчик 0,5S; TT 0,5;	I _{5 %} £I _{изм} <i <sub="">20 %</i>	1,8	2,9	5,5	2,2	3,2	5,6	
TH 0,5)	I _{20 %} £I _{изм} <i<sub>100%</i<sub>	1,2	1,7	3,0	1,6	2,1	3,2	
	I ₁₀₀ %£I _{изм} £I _{120%}	1,0	1,3	2,3	1,5	1,8	2,6	
2 – 6	$I_{1(2)}$ %£ I_{H3M} < I_{5} %	2,1	2,7	4,9	2,4	3,0	5,0	
2 – 0 (Счетчик 0,5S; TT 0,5S;	I _{5 %} £I _{изм} <i <sub="">20 %</i>	1,2	1,7	3,1	1,6	2,1	3,3	
TH 0,55, TH 0,5)	I _{20 %} £I _{изм} <i<sub>100%</i<sub>	1,0	1,3	2,3	1,5	1,8	2,6	
	I ₁₀₀ %£I _{изм} £I _{120%}	1,0	1,3	2,3	1,5	1,8	2,6	

Продолжение таблицы 3

продолжение тас	·	Метрологические характеристики ИК (реактивная энергия)				
Номер ИК	Диапазон значений силы тока	Основная от погрешност	Относительная погрешность ИК в рабочих условиях эксплуатации, (±δ), %			
		$\cos \varphi = 0.8$	$\cos \varphi = 0.5$	cos φ	= 0,8	$\cos \varphi = 0.5$
1	$I_{1(2)}$ %£ $I_{изм}$ < I_{5} %	-	-	-		-
Счетчик 1,0; ТТ 0,5;	$I_{5\%}$ £ $I_{_{\rm ИЗM}}$ < $I_{20\%}$	4,6	3,0	5,	5	4,1
TH 0,5)	I_{20} %£ $I_{_{\rm H3M}}$ < $I_{100\%}$	2,6	1,8	3,	9	3,4
	$I_{100}{}_{\%}\mathfrak{E}I_{{}_{H3M}}\mathfrak{E}I_{120\%}$	2,1	1,5	3,	6	3,3
2-6	I _{1(2) %} £I _{изм} <i <sub="">5 %</i>	4,1	2,7	5,1		4,0
(Счетчик 1,0;	I _{5 %} £I _{изм} <i <sub="">20 %</i>	2,9	2,1	4,1		3,6
TT 0,5S; TH 0,5)	I _{20 %} £I _{изм} <i<sub>100%</i<sub>	2,1	1,5	3,6		3,3
	I _{100 %} £I _{изм} £I _{120%}	2,1	1,5	3,	6	3,3
Пределы допускаемой погрешности СОЕВ, $(\pm \Delta)$, с 5						

Примечания:

- 1 Погрешность измерений электрической энергии $d_{l(2)\%P}$ и $d_{l(2)\%Q}$ для $\cos j=1,0$ нормируется от $I_{1\%}$, погрешность измерений $d_{l(2)\%P}$ и $d_{l(2)\%Q}$ для $\cos j<1,0$ нормируется от $I_{2\%}$.
- 2 Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 3 В качестве характеристик относительной погрешности измерения электроэнергии и средней мощности указаны границы интервала, соответствующие доверительной вероятности равной 0,95.
- 4 Допускается замена измерительных трансформаторов, счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что собственник АИИС КУЭ не претендует на улучшение указанных в таблице 3 метрологических характеристик. Замена оформляется техническим актом в установленном собственником порядке с внесением изменений в эксплуатационные документы. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ как их неотъемлемая часть.
- 5 Виды измеряемой электроэнергии для всех ИК, перечисленных в таблице 2, активная, реактивная.

Таблица 4 – Основные технические характеристики

Наименование характеристики	Значение
Нормальные условия применения:	
параметры сети:	
- напряжение, % от U _{ном}	от 99 до 101
- TOK, % OT I _{HOM}	от 1 до 120
- коэффициент мощности	0,87
- частота, Гц	от 49,85 до 50,15
температура окружающей среды, °С:	
- для счетчиков активной и реактивной энергии:	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение, % от Uном	от 90 до 110
- ток, % от I _{ном}	от 1 до 120
- коэффициент мощности, не менее	0,5
- частота, Гц	от 49,6 до 50,4
диапазон рабочих температур окружающей среды, °С:	
- для ТТ и ТН	от -40 до +50
- для счетчиков	от +10 до +30
магнитная индукция внешнего происхождения, мТл, не более	0,5
Надежность применяемых в АИИС КУЭ компонентов:	
счетчики электроэнергии:	
- средняя наработка до отказа, ч, не менее	160000
ивк:	
- средняя наработка до отказа, ч, не менее	100000
- среднее время восстановления работоспособности, ч	1
Глубина хранения информации:	
счетчики электроэнергии:	
- сохранение в памяти, сут	30
ИВК:	
- результаты измерений, состояние объектов и средств измерений,	
лет, не менее	3,5

Надежность системных решений:

резервирование питания ИВК с помощью источника бесперебойного питания и устройства АВР;

резервирование каналов связи: информация о результатах измерений может передаваться с помощью электронной почты;

в журналах событий счетчиков и ИВК фиксируются факты параметрирования; пропадания напряжения и коррекции шкалы времени.

Защищенность применяемых компонентов:

наличие механической защиты от несанкционированного доступа и пломбирование: счетчиков электроэнергии;

промежуточных клеммников вторичных цепей напряжения;

испытательной коробки;

ИВК.

Наличие защиты на программном уровне: пароль на счетчиках электроэнергии, пароль на ИВК. Пароли на сервере, предусматривающие разграничение прав доступа к измерительным данным для различных групп пользователей.

Возможность коррекции шкалы времени в счетчиках электроэнергии (функция автоматизирована) и ИВК (функция автоматизирована).

Знак утверждения типа

наносится на титульный лист формуляра АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 5.

Таблица 5 – Комплектность средства измерений

Наименование	Обозначение	Количество
Трансформаторы тока проходные с литой изоляцией	ТПЛ-10У3	2 шт.
Трансформатор тока	ТПЛ- СЭЩ-10	7 шт.
Трансформатор напряжения	НТМИ-10	1 шт.
Трансформатор напряжения	НАЛИ-СЭЩ	1 шт.
Счетчики электрической энергии трехфазные	ЗЕВС 3ху	6 шт.
Сервер ИВК	Supermicro SuperServer SYS- 2027-TR-D70RF	1 шт.
ПО	«АРГО: Энергоресурсы»	1 шт.
Устройство синхронизации времени	TSP-901/485U	1 шт.
Методика поверки	РТ-МП-5370-550-2018	1 экз.
Формуляр	РАГМ.411301.101.ФО	1 экз.

Поверка

осуществляется по документу РТ-МП-5370-550-2018 «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «ГосМКБ Радуга им. А.Я. Березняка». Методика поверки», утвержденному ФБУ «Ростест-Москва» 03.08.2018 г.

Основные средства поверки:

- средства поверки в соответствии с нормативными документами на средства измерений, входящие в состав АИИС КУЭ;
- прибор для измерения электроэнергетических величин и показателей качества электрической энергии Энергомонитор-3.3T1, регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 39952-08;
- радиочасы МИР РЧ-02, регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 46656-11;
- прибор комбинированный Testo 622, регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 53505-13.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемого средства измерений с требуемой точностью.

Знак поверки, в виде оттиска поверительного клейма и (или) наклейки, наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в документе «Методика (методы) измерений количества электрической энергии с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) АО «ГосМКБ Радуга им. А.Я. Березняка». Свидетельство об аттестации методики (методов) измерений 2353/550-RA.RU.311703-2018 от 22.05.2018 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) АО «ГосМКБ Радуга им. А.Я. Березняка»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «РЕСУРС»

(ООО «РЕСУРС») ИНН 7727500055

Адрес: 108841, г. Москва, г. Троицк, ул. Заречная, д. 25, подвал пом. 2, ком.1

Телефон: +7 (926) 878-27-26 Web-сайт: <u>www.e-resurss.ru</u> E-mail: sa-resurs <u>@yandex.ru</u>

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве» (ФБУ «Ростест-Москва»)

Адрес: 117418, г. Москва, Нахимовский проспект, д. 31

Телефон/факс: +7 (495) 544-00-00

Web-сайт: <u>www.rostest.ru</u> E-mail: <u>info@rostest.ru</u>

Аттестат аккредитации Φ БУ «Ростест-Москва» по проведению испытаний средств измерений в целях утверждения типа RA.RU.310639 от 16.04.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. «___ » _____ 2018 г.