УТВЕРЖДАЮ

Заместитель директора ФГУП «СНИИМ» В.Ю. Кондаков

«13» июня 2018 г.

Система автоматизированная учета тепловой энергии и параметров теплоносителя Стерлитамакской ТЭЦ (производственной площадки Стерлитамакская ТЭЦ) ООО «БГК»

Методика поверки

MΠ-149-RA.RU.310556-2018

1 ОБЩИЕ ПОЛОЖЕНИЯ

- 1.1 Настоящая методика поверки распространяется на систему автоматизированную учета тепловой энергии и параметров теплоносителя Стерлитамакской ТЭЦ (производственной площадки Стерлитамакская ТЭЦ) ООО «БГК» (далее Система), предназначенную для измерений количества теплоты (тепловой энергии), параметров теплоносителя (температуры, давления, расхода) и количества (объема, массы) теплоносителя при учете тепловой энергии.
- 1.2 Первичная поверка проводится при вводе в эксплуатацию системы, а также после ремонта.
- 1.3 Периодическая поверка проводится по истечении интервала между поверками.
- 1.4 Интервал между поверками 4 года.
- 1.5 Средства измерений (далее СИ), входящие в состав Системы, поверяют с интервалом между поверками, установленным при утверждении их типа по их методикам поверки. Если очередной срок поверки какого-либо СИ наступает до очередного срока поверки Системы, поверяется только это СИ. При этом поверка Системы (в том числе в части измерительного канала, в состав которого входит это СИ) не проводится.
- 1.6 Замена СИ, входящих в состав измерительных каналов (далее ИК) Системы, на однотипные допускается при наличии у последних действующих свидетельств о поверке. При этом поверка Системы (в том числе в части ИК, в состав которого входит это СИ) не проводится.
- 1.7 Допускается проведение поверки отдельных ИК из состава системы в соответствии с заявлением владельца системы с обязательным указанием в свидетельстве о поверке информации об объеме проведенной поверки.

2 ОПЕРАЦИИ ПОВЕРКИ

2.1 При проведении поверки должны быть выполнены операции, указанные в таблице 1.

Таблица 1 – Операции поверки

Наименование	Номер пункта
операции	методики поверки
1 Внешний осмотр	7.1
2 Опробование	7.2
3 Проверка метрологических характеристик	7.3
4 Проверка информационного обмена	7.4
5 Проверка идентификационных данных программного обеспечения	7.5

2.2 При получении отрицательного результата при проведении какой-либо из операций поверка прекращается.

3 СРЕДСТВА ПОВЕРКИ

3.1 При проведении поверки применяют средства измерений, в соответствии с методиками поверки, указанными в описаниях типа на измерительные компоненты системы, а также приведенные в таблице 2.

Таблица 2 – Средства поверки

Номер	Наименование и тип основного или вспомогательного средства поверки;				
пункта	обозначение нормативного документа, регламентирующего технические				
методики	требования, и (или) метрологические и основные технические характеристики				
поверки	средства поверки				
7.2	Измеритель-регистратор температуры и относительной влажности EClerk-M-11-				
	RHT (Рег. № 61870-15) Температура: от -40 до +70 °C ПГ ±1,0 °C Относительная				
	влажность: от 10 до 90 % ПГ ±3 %				
7.2	Измеритель абсолютного и дифференциального давления газа МБГО-2. (Рег. №				
	39837-08) Диапазон измерений от 40 до 150 кПа; ПГ \pm (30+0,001·P) Па				
Примечания:					
Допускается использование других средств поверки, обеспечивающих определение					
метрологических характеристик системы с требуемой точностью.					

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1 Поверка выполняется специалистами, аккредитованной в установленном порядке метрологической службы, ознакомившимися с технической и эксплуатационной документацией и настоящей методикой поверки.
- 4.2 При проведении поверки должны быть соблюдены требования охраны труда предприятия, на котором проводят поверку системы. Должны выполняться требования действующих нормативных актов, инструкций по охране труда и окружающей среды.
- 4.3 При проведении поверки должны соблюдаться требования безопасности, изложенные в «Правилах технической эксплуатации электроустановок потребителей» и эксплуатационной документации системы и ее компонентов.

5 УСЛОВИЯ ПОВЕРКИ

- 5.1 Условия поверки измерительных компонентов системы указаны в методиках поверки на эти компоненты.
- 5.2 Условия поверки системы должны соответствовать условиям ее эксплуатации, нормированным в технической документации, но не выходить за нормированные условия применения средств поверки.

6 ПОДГОТОВКА К ПОВЕРКЕ

- 6.1 Перед проведением поверки выполнить следующие подготовительные работы:
 - провести организационно-технические мероприятия по доступу поверителей к местам установки компонентов Системы;
 - провести организационно-технические мероприятия по обеспечению безопасности поверочных работ в соответствии с действующими правилами и руководствами по эксплуатации применяемого оборудования.
- 6.2 Проверить наличие и работоспособность средств поверки, перечисленных в таблице 2.
- 6.3 Подготовить средства поверки к работе в соответствии с требованиями их эксплуатационной документации.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

- 7.1 Внешний осмотр
- 7.1.1 Внешний осмотр проводят визуально без снятия напряжения питания с компонентов ИК.
- 7.1.2 При проведении внешнего осмотра должно быть установлено:
 - отсутствие механических повреждений компонентов, входящих в состав Системы;

- состояние линий связи, разъемов и соединительных клеммных колодок, при этом они не должны иметь повреждений, деталей с ослабленным или отсутствующим креплением;
- наличие и целостность пломб в местах, предусмотренных эксплуатационной документацией;
- соответствие состава и комплектности Системы руководству по эксплуатации;
- наличие маркировки линий связи и компонентов ИК;
- наличие заземляющих клемм (или клемм на корпусах) шкафов с электрооборудованием, входящим в состав Системы.
- 7.1.3 Результаты проверки считают положительными, если монтаж СИ, измерительновычислительных и связующих компонентов Системы, внешний вид и комплектность Системы соответствуют требованиям эксплуатационной документации, средства измерений, входящие в состав измерительных каналов опломбированы в соответствии с требованиями эксплуатационной документации на них.

7.2 Опробование

- 7.2.1 Перед опробованием Системы в целом необходимо выполнить проверку функционирования ее компонентов.
- 7.2.2 При опробовании линий связи проверяется:
 - поступление информации по линиям связи;
 - наличие сигнализации об обрыве линий.
- 7.2.3 Проверку функционирования и исправности линий связи проводят с рабочего места оператора путем визуального наблюдения на экране текущих значений технологических параметров и архивных данных в установленных единицах.
- 7.2.4 При опробовании Системы проверяется:
 - сохранение результатов измерений с привязкой даты и времени;
 - возможность вывода на печать графиков и форм отчетности;
 - сохранность в памяти информации о нештатных ситуациях с привязкой даты и времени.
- 7.2.5 Опробование Системы в целом проводится с APM оператора. Результаты проверки считают положительными, если по завершении опроса всех ИК в отчетах присутствуют результаты измерений всех ИК с указанием текущей даты и времени.

7.3 Проверка метрологических характеристик

- 7.3.1 Проверку метрологических характеристик ИК Системы проводят в следующем порядке:
- 7.3.1.1 Проверяют наличие действующих результатов поверки в виде свидетельств о поверке или отметок о поверке в паспорте на все первичные измерительные преобразователи (далее ПИП) и тепловычислители, входящие в состав Системы.
- 7.3.1.2 Метрологические характеристики ПИП и тепловычислителей принимают равными значениям, приведенным в их эксплуатационной документации при наличии на них действующих результатов поверки.
- 7.3.1.3 Погрешность ИК Системы определяют расчетным методом по следующим формулам: для ИК давления:

$$\gamma = \pm (|\gamma_{\Pi \Pi \Pi}| + |\gamma_{C\Pi T}|) \tag{1}$$

гле:

 $\gamma_{\Pi \Pi \Pi}$ — приведенная к верхнему пределу измерений погрешность преобразователей давления, %;

γ_{СПТ} − приведенная к верхнему пределу измерений погрешность тепловычислителей по измерению сигналов постоянного тока от 4 до 20 мА, соответствующих давлению, %.

- для ИК температуры:

$$\Delta = \pm (|\Delta_{\Pi \mu \Pi}| + |\Delta_{\Pi \Pi}|) \tag{2}$$

где:

 $\Delta_{\text{пип}}$ — абсолютная погрешность термометров (термопреобразователей) сопротивления, °C; $\Delta_{\text{спт}}$ — абсолютная погрешность тепловычислителей по измерению сигналов сопротивления, соответствующих температуре (преобразователи температуры с R_0 =100 Oм), °C.

Относительную погрешность измерений разности температур, $\delta \Delta t$, %, вычисляют как арифметическую сумму погрешности комплекта термопреобразователей сопротивления и погрешности тепловычислителя по измерению разности сопротивлений сигналов, соответствующих температуре.

- для ИК объемного расхода теплоносителя:

$$\delta G = \pm (|\delta_{\text{DMI}}| + |\delta_{\text{CHT}}|) \tag{3}$$

где:

 $\delta_{\text{пип}}$ — относительная погрешность измерений объемного расхода преобразователем расхода, %; $\delta_{\text{СПТ}}$ — относительная погрешность тепловычислителей при измерении числоимпульсных сигналов, %.

- для ИК массового расхода, массы, объема теплоносителя:

$$\delta G_{M} = \pm (|\delta_{\Pi M\Pi}| + |\delta_{C\Pi T}|) \tag{4}$$

где:

 $\delta_{\Pi \Pi \Pi}$ — относительная погрешность измерений объемного расхода, преобразователем расхода %:

 $\delta_{\text{СПТ}}$ – относительная погрешность вычислений массового расхода, массы, объема тепловычислителем, %.

- для ИК тепловой энергии:

$$\delta Q = \pm \left(\left| \delta G \right| + \left| \delta \Delta t \right| + \left| \delta_{u_{\delta t} q} \right| \right), \tag{5}$$

где:

 δG – относительная погрешность ИК объемного расхода, %;

 $\delta \Delta t$ – относительная погрешность измерений разности температур, %;

 $\delta_{\text{ныч}}$ — относительная погрешность вычисления тепловой энергии тепловычислителем, %.

- 7.3.2 Результаты проверки считают удовлетворительными если:
 - СИ, входящие в состав системы имеют действующие результаты проверки;
 - рассчитанная погрешность ИК Системы не выходит за пределы, указанные в описании типа.
- 7.4 Проверка информационного обмена
- 7.4.1 Распечатывают результаты измерений, хранящиеся на сервере, по всем узлам учета Системы, зарегистрированные с 60-минутным интервалом за полные предшествующие дню поверки сутки. Проверяют наличие данных, соответствующих каждому 60-ти минутному интервалу времени. Пропуск данных не допускается за исключением случаев, когда этот пропуск был обусловлен отключением ИК или устраненным отказом какого-либо компонента Системы.
- 7.4.2 Распечатывают журнал событий тепловычислителя и отмечают моменты нарушения связи между измерительными компонентами Системы. Проверяют сохранность измерительной информации в памяти тепловычислителя и сервере Системы на тех интервалах времени, в течение которого была нарушена связь.

- 7.4.3 Скачивают часовой архив тепловычислителей за полные предшествующие дню поверки сутки по всем узлам учета.
- 7.4.4 Сравнивают результаты измерений каждого тепловычислителя и сервера, зарегистрированные с 60-ти минутным интервалом за полные предшествующие дню поверки сутки.
- 7.4.5 Результаты проверки считают положительными, если результаты измерений, считанные из тепловычислителей, не отличаются от значений, считанных с сервера, больше чем на единицу младшего разряда.
- 7.5 Проверка идентификационных данных программного обеспечения
- 7.5.1 Идентификационные данные встроенного ПО тепловычислителей содержатся в структуре справочного параметра базы данных тепловычислителя с номером 099.
- 7.5.2 Для проверки идентификационных данных ПО тепловычислителей необходимо:
 - войти в пункт меню тепловычислителя ВВД (Прибор ВВД);
 - ввести номер параметра 099;
 - нажать клавишу ↓.
- 7.5.3 На дисплее тепловычислителей будет выведено сообщение 099н00=СПТ961.XvYY-ZZZZ, где YY номер версии ПО, ZZZZ контрольная сумма исполняемого кода.
- 7.5.4 Результат проверки идентификационных данных ПО тепловычислителей из состава Системы считают положительным, если номер версии ПО и контрольная сумма совпадают с приведенными в описании типа.
- 7.5.5 Проверка идентификационных данных для автономного ПО производится для метрологически значимой части программного обеспечения (ПО) в составе, приведенном в таблице 3.
- 7.5.6 В соответствии с инструкциями оператора считывают наименования, идентификационные наименования и номера версий ПО и сличают с приведенными в таблице 3.
- 7.5.7 Проверяется наличие на сервере Системы утилиты расчета контрольных сумм по алгоритму MD5. В случае отсутствия, необходимо скачать утилиту Microsoft File Checksum Integrity Verifier (FCIV) с официального сайта www.microsoft.com.
- 7.5.8 В соответствии с руководством пользователя утилиты FCIV рассчитать контрольные суммы по алгоритму MD5 для файлов из таблицы 3.
- 7.5.9 Сравнить полученные идентификационные данные ПО со значениями указанными в Руководстве по эксплуатации и описании типа на Систему.
- 7.5.10 Результаты проверки идентификационных данных ПО считают положительными, если установлено полное соответствие идентификационных данных ПО.

Таблица 3 – Идентификационные данные метрологически значимой части ПО Системы

Идентификационные данные (признаки)	Значение ОРС-сервер "ЛОГИКА"	
Наименование ПО		
Идентификационное наименование ПО	DAS.exe	
Номер версии (идентификационный номер) ПО	не ниже v3.4	
Цифровой идентификатор ПО	602bf3a83ab181de5f74e20b0659c906	
Алгоритм вычисления цифрового	MD5	
идентификатора программного обеспечения		
Наименование ПО	SCADA/HMI DataRate	
Идентификационное наименование ПО	Krug.SCADA.RuntimeHost.exe	
Номер версии (идентификационный номер) ПО	не ниже 3.3 SP1	
Цифровой идентификатор ПО	5a062535e89f845d4384d00e7a5bfd0d	
Наименование ПО	АСТЭП	
Идентификационное наименование ПО	ASTEP.exe	

Идентификационные данные (признаки)	Значение
Номер версии (идентификационный номер) ПО	не ниже 2.4.88.306
Цифровой идентификатор ПО	51262d95498c36a25743c7ce3f7c7e34
Алгоритм вычисления цифрового идентификатора программного обеспечения	MD5

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1 Результаты поверки оформляют протоколом произвольной формы.
- 8.2 Положительные результаты поверки системы оформляют свидетельством о поверке в соответствии с приказом Минпромторга РФ № 1815 от 2 июля 2015 г. На обратной стороне свидетельства о поверке или в приложении к свидетельству о поверке приводят:
 - перечень поверенных ИК;
 - указание о том, что свидетельство о поверке системы считается действующим при наличии действующих результатов поверки на все измерительные компоненты, входящие в состав системы и поверяемые отдельно.
- 8.3 Знак поверки наносится на свидетельство о поверке.
- 8.4 Результаты поверки считают отрицательными, если при проведении поверки установлено несоответствие хотя бы по одному из пунктов настоящей методики.
- 8.5 Отрицательные результаты поверки оформляют выдачей извещения о непригодности.

Ведущий инженер ФГУП «СНИИМ»	Mity	/ <u>А.В. Червонецкая</u> /
(должность)	(подпись)	(расшифровка подписи