ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Модули инклинометрические телесистем APS Technology

Назначение средства измерений

Модули инклинометрические телесистем APS Technology (далее – модули) предназначены для измерений азимута и зенитного угла ствола горизонтальной или наклонно-направленной скважины и угла установки отклонителя бурового инструмента.

Описание средства измерений

Принцип действия модулей основан на измерении в скважине в трех направлениях, с помощью трех ортогонально установленных акселерометров, значений проекций вектора силы тяжести на ось чувствительности акселерометра и измерениях в трех направлениях, с помощью трех феррозондов, проекций вектора напряженности естественного магнитного поля Земли на ось чувствительности. На основании этих измерений вычисляются азимутальный и зенитный углы скважины, а также угол установки отклонителя.

Передача информации с модулей осуществляется по внутренним проводам телесистемы APS Technology, а на поверхность от телесистемы по электромагнитному или импульсногидравлическому каналу связи.

Перед непосредственной эксплуатацией модулей операторы производят сборку скважинного оборудования системы, в состав которой входят модули. Далее производится сборка скважинных модулей системы в Немагнитную Утяжеленную Буровую Трубу с целью исключения влияния магнитной массы низа бурильной колонны на показания модулей.

При движении по траектории наклонно-направленной скважины сборка скважинного оборудования меняет свою пространственную ориентацию, а именно: отклоняется от вертикали на зенитный угол, поворачивается в скважине на визирный угол (угол установки отклонителя) по отношению к плоскости наклона и ориентируется по направлению наклона траектории относительно точки устья скважины на азимутальный угол. Датчик системы формирует управляющую команду и инициализирует процесс съёма и передачи инклинометрических замеров для определения зенитного угла и азимута искривления буровой скважины. После этого модули переключаются в режим выполнения постоянных замеров для определения визирного угла сборки скважинных приборов системы по отношению к плоскости наклона.

Общий вид модулей представлен на рисунке 1.

Рисунок 1 - Общий вид модулей инклинометрических телесистем APS Technology

Предотвращение несанкционированного доступа к узлам модулей достигается герметичной заливкой электронных плат специальными компаундами. Пломбировка изделия не предусмотрена.

Программное обеспечение

Модули имеют встроенное программное обеспечение (далее - ВПО). С помощью указанного программного обеспечения обеспечивается взаимодействие узлов, настройка, обработка и передача результатов измерений.

Защита программного обеспечения и измеренных данных от непреднамеренных и преднамеренных изменений соответствует уровню «высокий» в соответствии с Р 50.2.077-2014.

Идентификационные данные ВПО приведены в таблице 1.

Таблица 1 – Идентификационные данные программного обеспечения

Идентификационное наименование ПО	MWD Master Interface Firmware
Номер версии (идентификационный номер ПО), не ниже	50088R0129
Цифровой идентификатор ПО	-

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

тиолица 2 тистрологи теские характеристики	
Наименование характеристики	Значение
Зенитный угол	·
- диапазон измерений, °	от 0 до 180
- пределы допускаемой абсолютной погрешности измерений, °	±0,1
Азимут	·
- диапазон измерений, °	от 0 до 360
- пределы допускаемой абсолютной погрешности измерений при	
значении зенитного угла от 10° до 170° , включ., $^{\circ \circ}$	±1
Угол установки отклонителя	
- диапазон измерений, °	от 0 до 360
- пределы допускаемой абсолютной погрешности измерений, °:	
- при значении зенитного угла от 1 до 10° включ.	±3,0
- при значении зенитного угла св. 10 до 170° не включ.	±0,3
- при значении зенитного угла от 170 до 179° включ.	±3,0

Таблица 3 – Основные технические характеристики

Наименование характеристики	Значение
Габаритные размеры, мм, не более:	
- длина	1644
- диаметр	48
Масса, кг, не более	16
Требования по электропитанию:	
- напряжение питания постоянного тока, В	от 5 до 36
Температура рабочих условий, °С	от +5 до +150

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации методом печати.

Комплектность средства измерений

Таблица 4 - Комплектность средства измерений

Наименование	Обозначение	Количество
Модуль инклинометрический	-	1 шт.
Кабель соединительный	-	1 комп.
Центратор, размер от 2,20 до 4,25 дюйм	-	по заказу
Руководство по эксплуатации	60474	1 шт.
Паспорт	-	1 шт.
Методика поверки	МП АПМ 31-18	1 шт.

Поверка

осуществляется по документу МП АПМ 31-18 «Модули инклинометрические телесистем APS Technology». Методика поверки», утверждённому ООО «Автопрогресс–М» «04» мая 2018 года.

Основные средства поверки:

- квадрант оптический KO-60M, ±120°, ПГ ±30" (рег. № 26905-04);
- теодолит 4Т30П (рег. № 5305-95).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик, поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к модулям инклинометрическим телесистем APS Technology

ГОСТ 26116-84 Аппаратура геофизическая скважинная. Общие технические условия Техническая документация «APS Technology, Inc.», США

Изготовитель

«APS Technology, Inc.», CША

Адрес: 7 Laser Lane, Wallingford, CT 06492 USA Тел./факс: +1 860-613-4450 / +1 203-284-7428

E-mail: <u>nspiridonov@aps-tech.com</u>

Заявитель

Общество с ограниченной ответственностью «АПС Технолоджи Евразия»

(ООО «АПС Технолоджи Евразия»)

ИНН 0265043225

Адрес: 452615, Республика Башкортостан, г. Октябрьский, ул. Космонавтов, д. 59/15, Π . 1

Тел./факс: +7 347-677-07-73 E-mail: rkhatsko@aps-tech.com

Испытательный центр

Общество с ограниченной ответственностью «Автопрогресс-М»

(ООО «Автопрогресс-М»)

Адрес: 123308, г. Москва, ул. Берзарина, д. 12

Тел.: +7 (495) 120-0350, факс: +7 (495) 120-0350 доб. 0

E-mail: info@autoprogress-m.ru

Аттестат аккредитации ООО «Автопрогресс-М» по проведению испытаний средств измерений в целях утверждения типа RA.RU.311195 от 30.06.2015 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

А.В. Кулешов

М.п. «___ » ____ 2018 г.