ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Системы оптоэлектронные измерительные «СКС-Т1»

Назначение средства измерений

Системы оптоэлектронные измерительные «СКС-Т1» (далее – системы) предназначены для регистрации импульсов электрического напряжения и измерения коэффициента преобразования.

Описание средства измерений

Принцип действия систем основан на пропорциональном аналого-цифровом преобразовании входных импульсов электрического напряжения в цифровой код с последующей обработкой, запоминанием и измерением их амплитудных значений с помощью поставляемого программного обеспечения, функционирующего под управлением персональной электронно-вычислительной машины (ПЭВМ).

Измеряемый системами коэффициент преобразования является амплитудной характеристикой импульсов электрического напряжения и представляет собой отношение амплитуды выходного импульса к амплитуде входного импульса.

Каждая система состоит из следующих частей: измерительного преобразующего блока (ИПБ), симплексного одномодового волоконно-оптического кабеля (ВОК), приемно-передающего блока (ППБ) и программно-математического обеспечения (ПО). Каждая система имеет восемь одинаковых измерительных каналов.

При работе исследуемый импульс электрического напряжения подается на один из входов измерительного преобразующего блока (ИПБ), где после усиления и фильтрации осуществляется его аналого-цифровое линейное преобразование в оптический сигнал, который по симплексному одномодовому волоконно-оптическому кабелю (ВОК) передается к приемному передающему блоку (ППБ), где обеспечивается обратное преобразование оптического сигнала в пропорциональный по амплитуде электрический. Использование волоконно-оптического кабеля позволяет полностью исключить помеховое влияние внешних электромагнитных полей на амплитуду и форму регистрируемых импульсов напряжения. Для регистрации сигналов с выхода ППБ и определения их амплитудных значений, используется ПЭВМ с поставляемым в комплекте программно-математическим обеспечением.

В состав ИПБ входят следующие узлы: управляемый усилитель с дифференциальным входом, аналого-цифровой преобразователь (АЦП), блок управления, двухканальный блок питания, медиа конвертер для преобразования электрического цифрового сигнала в оптический. При работе исследуемый аналоговый импульс напряжения поступает на дифференциальный вход усилителя с изменяемым коэффициентом передачи, использование дифференциального входа позволяет значительно уменьшить влияние синфазных помех на преобразуемый сигнал. После усиления и фильтрации аналоговый сигнал поступает на вход АЦП, который преобразует его в цифровой сигнал и передает его в блок управления. Использование встроенного в ИПБ АЦП позволяет снизить погрешности преобразования сигнала и устранить влияние нестабильности коэффициента передачи оптического тракта. Блок управления ИПБ осуществляет прием, преобразование и выполнение команд, поступающих от управляющей ПЭВМ по волоконно-оптическому кабелю - переключает поддиапазоны усилителя, управляет АЦП, управляет питанием ИПБ. Обмен информацией между блоком управления и управляющей ПЭВМ осуществляется по протоколу ТСР/ІР при помощи интерфейса ETHERNET. Медиа конвертер осуществляет преобразование электрического сигнала в оптический. Электропитание всех цепей и узлов ИПБ осуществляется от управляемого автономного двухканального блока питания, установленного внутри корпуса ИПБ с использованием аккумуляторных литий-ионных батарей.

В состав ППБ входит медиаконвертер. Оптический сигнал с волоконно-оптического кабеля поступает на вход медиаконвертера, в котором осуществляется преобразование оптического сигнала в электрический, который в виде импульсов напряжения поступает на вход ПЭВМ. Подключение медиаконвертера к ПЭВМ осуществляется через разъем типа RG 45.

В качестве волоконно-оптического кабеля использован симплексный одномодовый кабель с разъемами типа FC/SC на концах.

Общий вид системы представлен на рисунке 1.

Обозначение мест нанесения маркировки, знака поверки представлено на рисунке 2.

Пломбирование составных частей системы не предусмотрено.

Рисунок 1 – Общий вид системы

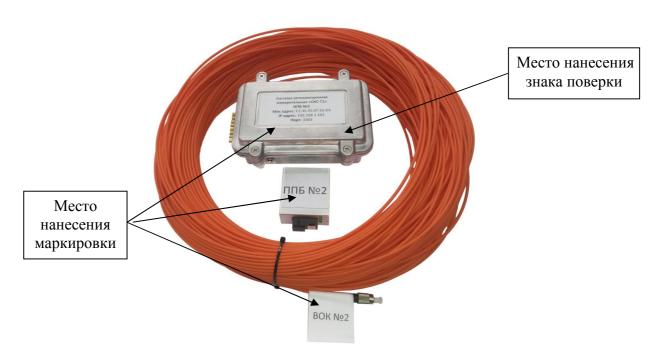


Рисунок 2 – Обозначение мест нанесения маркировки, знака поверки

Программное обеспечение

Управление системами и обработка результатов измерений проводится с помощью специального программного обеспечения (ПО) «Система СКС».

Программа состоит из нескольких основных блоков: главный поток, потоки измерительных преобразователей и поток записи данных. При запуске программы выполняется инициализация, загрузка в менеджер проектов ранее проводимых испытаний и подготовка к подключению. Главный поток содержит обработчик команд, менеджер испытаний и блок настройки ИПБ.

Программное обеспечение размещается в энергонезависимой памяти ИПБ и его запись осуществляется в процессе производства. Операционная система, имеющая оболочку доступную пользователю, отсутствует. Программное обеспечение и его окружение являются неизменными, средства для программирования или изменения метрологически значимых функций отсутствуют. Доступ пользователя к встроенному программному обеспечению исключен конструктивным исполнением прибора.

Установка обновленных версий ПО допускается только представителями предприятия – изготовителя с помощью специального оборудования.

Уровень защиты программного обеспечения «средний» в соответствии с Р 50.2.077-2014.

Таблица 1 – Идентификационные данные программного обеспечения «Система СКС»

- managed a	
Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	«Система СКС»
Номер версии (идентификационный номер)	
ПО, не ниже	1.0.17.52
Цифровой идентификатор ПО (контрольная	
сумма метрологически значимой части ПО)	C313D16E95CD2432787CC975C919BF7A
Алгоритм вычисления цифрового идентифи-	
катора ПО	md5

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

, <u>1</u> 1 1	
Наименование характеристики	Значение
Коэффициент преобразования, B·B ⁻¹	
- первый диапазон	от 0,95 до 1,05
- второй диапазон	от 0,95 до 1,05
Пределы допускаемой относительной погрешности коэффициента пре-	
образования (при максимальной амплитуде измеряемых импульсов	
напряжения), %	±5,0
Максимальное значение амплитуды измеряемых импульсов	
напряжения, В	
- первый диапазон	±10
- второй диапазон	±5
Время установления переходной характеристики, мс, не более	20

Примечание — Время установления переходной характеристики определяется как интервал с момента начала выходного импульса напряжения (уровень 0,1 от среднего значения амплитуды на фронте импульса) до момента установления выходного напряжения в пределах зоны, определяемой размахом колебаний на вершине $\pm 5\,\%$ при максимальной частоте преобразования.

Таблица 3 – Основные технические характеристики

1 1			
Наименование характеристики	Значение		
Количество измерительных каналов	8		

Продолжение таблицы 3

Наименование характеристики	Значение
Разрядность АЦП, бит	18
Частота преобразования, Гц	500
Напряжение питания ИПБ, В	от 6 до 12
Длина волоконно-оптического кабеля, м, не менее	200
Мощность потребляемая, Вт, не более	6
Габаритные размеры ИПБ, мм, не более:	
-высота	55
-ширина	120
-длина	170
Масса (без упаковки), кг, не более	2,7
Условия эксплуатации:	
- температура окружающей среды, °С	от +18 до +35
- относительная влажность при +20 °C, %, не более	90
- атмосферное давление, кПа	от 94 до 107

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

Таблица 4 – Комплектность средства измерений

Наименование	Обозначение	Количество
Измерительный преобразующий блок (ИПБ)	_	1 шт.
Симплексный одномодовый волоконно-оптический кабель (ВОК)	_	1 шт.
Приемно-передающий блок (ППБ)	_	1 шт.
Программно-математическое обеспечение (ПО) «Система СКС»	_	1 шт.
Паспорт	РЦФС.411711.018 ПС	1 экз.
Руководство по эксплуатации	РЦФС.411711.018 РЭ	1 экз.
Методика поверки	МП 006.М12-18	1 экз.
Упаковка	_	1 шт.

Поверка

осуществляется по документу МП 006.М12-18 «ГСИ. Системы оптоэлектронные измерительные «СКС-Т1». Методика поверки», утвержденным ФГУП «ВНИИОФИ» 15 мая 2018 г.

Основные средства поверки:

- 1. Осциллограф цифровой TDS 784D (регистрационный номер 19296-00).
- 2. Генератор импульсов точной амплитуды Г5-75 (регистрационный номер 7767-80).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на корпус ИПБ в соответствии с рисунком 2.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные документы, устанавливающие требования к системам оптоэлектронным измерительным «СКС-Т1»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

Изготовитель

Общество с ограниченной ответственностью «Измерительные Системы» (ООО «Измерительные системы»)

ИНН 7717782509

Адрес: 129626, г. Москва, ул. 3-я Мытищинская, д. 16, стр. 34

Телефон: +7 (495) 602-93-30, факс: +7 (495) 602-93-31

E-mail: reaktpoint@gmail.com

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт оптико-физических измерений»

Адрес: 119361, г. Москва, ул. Озерная, д. 46

Телефон: +7 (495) 437-56-33, факс: +7 (495) 437-31-47

Web-сайт: <u>www.vniiofi.ru</u> E-mail: vniiofi@vniiofi.ru

Аттестат аккредитации Φ ГУП «ВНИИО Φ И» по проведению испытаний средств измерений в целях утверждения типа № 30003-14 от 23.06.2014 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

М.п. « ___ » _____ 2018 г.