ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «НЭСК» вторая очередь

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «НЭСК» вторая очередь (далее – АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, потребленной за установленные интервалы времени технологическими объектами ООО «НЭСК», автоматизированного сбора, обработки, хранения, формирования отчетных документов и передачи полученной информации заинтересованным организациям в рамках согласованного регламента

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, двухуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

Измерительные каналы состоят из двух уровней АИИС КУЭ:

1-й уровень – измерительно-информационные комплексы (ИИК), включающие в себя измерительные трансформаторы напряжения (ТН), измерительные трансформаторы тока (ТТ), многофункциональные счетчики активной и реактивной электрической энергии (счетчики), вторичные измерительные цепи и технические средства приема-передачи данных.

2-й уровень – информационно-вычислительный комплекс (ИВК), включающий в себя каналообразующую аппаратуру, сервер баз данных (БД), устройство синхронизации системного времени (УССВ), АРМы и программное обеспечение (ПО) КТС «Энергия+».

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Измерительная информация на выходе счетчиков без учета коэффициентов трансформации:

- активная и реактивная электрическая энергия, как интеграл по времени от средней за период 0,02 активной и реактивной мощности, соответственно, вычисляется для интервалов времени 30 мин.
 - средняя на и интервале 30 мин активная (реактивная) электрическая мощность.

Цифровой сигнал с выходов счетчиков по проводным линиям связи интерфейса RS-485 поступает на входы двух модулей интерфейсов групповых (МИГ), далее по проводным линиям связи интерфейса RS-232 поступает на входы GPRS-модема, и по основному каналу GPRS связи данные поступают в ИВК. При отказе основного канала связи цифровой сигнал с выходов МИГ по проводным линиям связи интерфейса RS-232 поступает на входы GSM-модема, и по резервному каналу GSM связи данные поступают в ИВК.

На верхнем уровне системы выполняется обработка измерительной информации, в частности вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, её формирование и хранение поступающей информации, оформление справочных и отчетных документов.

Передача информации в ПАК АО «АТС» за подписью ЭЦП субъекта ОРЭ, в филиал АО «СО ЕЭС» Саратовское РДУ и в другие смежные субъекты ОРЭ осуществляется по каналу связи с протоколом TCP/IP сети Internet в виде xml-файлов формата 80020 в соответствии с приложением 11.1.1 «Формат и регламент предоставления результатов измерений, состояния

средств и объектов измерений в AO «ATC», AO «CO EЭС» и смежным субъектам» к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мощности.

Доступ к информации, хранящейся в базе данных серверов, осуществляется с АРМ операторов АИИС КУЭ.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ), включающей в себя УССВ на основе GPS-приемника точного времени, часы сервера БД и счетчиков. Синхронизация осуществляется при расхождении показаний часов приемника и сервера БД на ± 60 мс. Сервер БД осуществляет синхронизацию времени счетчиков. Сличение времени часов счетчиков с временем часов сервера БД осуществляется один раз в сутки, корректировка времени часов счетчиков выполняется при достижении расхождения со временем часов сервера БД ± 2 с.

Журналы событий счетчика электроэнергии, сервера БД отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции и (или) величины коррекции времени, на которую было скорректировано устройство.

Программное обеспечение

В АИИС КУЭ используется ПО КТС «Энергия+». Уровень защиты ПО от непреднамеренных и преднамеренных изменений предусматривает ведение журналов фиксации ошибок, фиксации изменений параметров, защиты прав пользователей и входа с помощью пароля, защиты передачи данных с помощью контрольных сумм, что соответствует уровню «высокий» в соответствии с Р 50.2.077-2014. Метрологически значимая часть ПО указана в таблицах 1.

Таблица 1 – Идентификационные данные ПО КТС «Энергия+»

Идентификационные данные (признаки)	Значение		
Идентификационное наименование ПО	Ядро: Энергия + (файл kernel6.exe)	Запись в БД: Энергия + (файл Writer.exe)	Сервер устройств: Энергия + (файл IcServ.exe)
Номер версии (идентификационный номер) ПО		не ниже v. 6.5	
Цифровой	B26C3DC337223E64	28D3B14A74AC2358B	444971B1FA5BB153
идентификатор ПО	3068D2678B83E7FE	FE3C1E134D5CCDE	3F43A339F8186C7B
Алгоритм вычисления цифрового идентификатора		MD5	

Метрологические и технические характеристики

Состав измерительных каналов (ИК) и их основные метрологические и технические характеристики приведены в таблицах 2, 3, 4.

Таблица 2 — Состав ИК

Hoi	мер и наименование ИК	TT	TH	Счетчик	УСПД/УССВ/ Сервер
1	ПС 110 кВ Урицкая, 2 с.ш. 6 кВ яч. № 74	ТЛМ-10 Кл.т. 0,5 600/5 Рег. № 2473-00	НТМИ-6 Кл.т. 0,5 6000/100 Рег. № 51199-12	СЭТ-4ТМ.03М Кл.т. 0,2S/0,5 Рег. № 36697-12	КТС «Энергия+»
2	ПС 110 кВ Урицкая, 4 с.ш. 6 кВ яч. № 746	ТЛМ-10 Кл.т. 0,5 600/5 Рег. № 2473-00	НАМИТ-10 Кл.т. 0,5 6000/100 Рег. № 16687-07	СЭТ-4ТМ.03М Кл.т. 0,2S/0,5 Рег. № 36697-12	Per. № 21001-11

Примечания:

- 1 Допускается замена ТТ, ТН, счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик.
- 2 Допускается замена УССВ на аналогичные утвержденных типов. Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке, вносят изменения в эксплуатационные документы. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ как их неотъемлемая часть.

Таблица 3 – Основные метрологические характеристики ИК

Номера	Вил электрознервии	Границы основной	Границы погрешности в
ИК	Вид электроэнергии	погрешности, (±d), %	рабочих условиях, (±d), %
	Активная	1,3	2,9
1, 2			
	Реактивная	2,3	4,7

Примечания:

- 1 Характеристик погрешности ИК даны для измерений электроэнергии (получасовая)
- 2~B качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности P=0.95.

Таблица 4 – Основные технические характеристики ИК

Наименование характеристики	Значение
Количество ИК	2
Нормальные условия:	
параметры сети:	
- напряжение, % от Uном	от 98 до 102
- ток, % от Іном	от 1 до 120
- коэффициент мощности	0,9
- температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение, % от Uном	от 90 до 110
- ток, % от Іном	от 5 до 120
- коэффициент мощности, соsф	0,5 инд до 0,8 емк
- температура окружающей среды для ТТ и ТН, °С	от -45 до +40
- температура окружающей среды в месте расположения	
электросчетчиков, °С	от +10 до +30
Надежность применяемых в АИИС КУЭ компонентов:	
Электросчетчики:	
- среднее время наработки на отказ, ч, не менее	140000
- среднее время восстановления работоспособности, ч	2
Сервера:	
- среднее время наработки на отказ, ч, не менее	1900
- среднее время восстановления работоспособности, ч	1
Глубина хранения информации:	
Электросчетчики:	
- тридцатиминутный профиль нагрузки в двух направлениях, сут,	
не менее	113
- при отключении питания, лет, не менее	10
Сервер:	
- хранение результатов измерений и информации состояний средств	
измерений, лет, не менее	3,5
Пределы допускаемой погрешности СОЕВ, с	±5

Надежность системных решений:

- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии по электронной почте.

Регистрация событий:

- в журнале событий счетчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике.

Защищенность применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчетчика;
 - испытательной коробки;
 - сервера БД.
- защита информации на программном уровне:
- результатов измерений (при передаче, возможность использование цифровой подписи);

- установка пароля на счетчик;
- установка пароля на сервер БД.

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ.

Комплектность средства измерений

Комплектность АИИС КУЭ представлена в таблице 5.

Таблица 5 — Комплектность АИИС КУЭ

Наименование	Обозначение	Количество, шт.
Измерительный трансформатор тока	ТЛМ-10	4
Измерительный трансформатор напряжения	НТМИ-6	1
Измерительный трансформатор напряжения	НАМИТ-10	1
Счетчики электрической энергии трехфазные	CЭT-4TM.03M	2
многофункциональные	C51-41WI.03WI	
Сервер	КТС «Энергия+»	1
ПО	КТС «Энергия+»	1
Руководство по эксплуатации	153-16-ФО вторая очередь	1
Методика поверки	МП РЦСМ-008-2018	1

Поверка

осуществляется по документу МП РЦСМ-008-2018 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО «НЭСК» вторая очередь. Методика поверки», утвержденному ФБУ «Рязанский ЦСМ» 19.04.2018 г.

Основные средства поверки:

- TT πο ΓΟCT 8.217-2003;
- ТН по МИ 2845-2003, МИ 2925-2005 и/или по ГОСТ 8.216-2011;
- Счетчик СЭТ-4ТМ.03М по документу: ИЛГШ.411152.145РЭ1, являющейся приложением к руководству по эксплуатации ИЛГШ.411152.145РЭ, согласованной с ГЦИ СИ ФГУ «Нижегородский ЦСМ» в 2007 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS) (регистрационный номер в Федеральном информационном фонде 27008-04);

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке АИИС КУЭ.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «НЭСК» вторая очередь

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Закрытое акционерное общество «Независимая Электросетевая Компания» (ЗАО «НЭСК»)

ИНН 6450050877

Адрес: 410018, г. Саратов, ул. Сетевая, д. 12

Телефон: (8452) 79-08-08

Заявитель

Общество с ограниченной ответственностью «Альфа-Энерго» (ООО «Альфа-Энерго»)

ИНН 7707798605

Адрес: 119435, г. Москва, Большой Саввинский пер, д. 16, пом. 1

Телефон: (499) 917-03-54

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации метрологии и испытаний в Рязанской области» (ФБУ «Рязанский ЦСМ»)

Адрес: 390011, г. Рязань, Старообрядческий проезд, д. 5

Телефон: (4912)55-00-01 Факс: (4912) 44-55-84

Web-сайт: http://www.rcsm-ryazan.ru

E-mail: asu@rcsm-ryazan.ru

Аттестат аккредитации ФБУ «Рязанский ЦСМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311204 от 10.08.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. « ___ » _____ 2018 г.