УТВЕРЖДАЮ Генеральный директор ООО «Автопрогресс–М»

А.С. Никитин

«17» мая 2018 г.

ДАТЧИКИ ПЕРЕМЕЩЕНИЙ (ДЕФОРМАЦИЙ) СЕРИИ 3580

МЕТОДИКА ПОВЕРКИ МП АПМ 24-18 Настоящая методика распространяется на датчики перемещений (деформаций) серии 3580, производства «Walter+Bai AG», Швейцария (далее - датчики) и устанавливает методику их первичной и периодической поверки.

Интервал между поверками – 1 год.

1 ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки должны выполняться операции, указанные в таблице 1.

Таблица 1 – Операции поверки

Наименование операции	Номер пункта МП	Проведение операции при	
		первичной поверке	периодиче- ской поверке
1. Внешний осмотр	- 7.1	да	да
2. Идентификация программного обеспечения	7.2	да	да
3. Опробование	7.3	да	да
4. Определение диапазона и погрешно- стей измерений перемещений (деформа- ций)	7.4	да	да

2 СРЕДСТВА ПОВЕРКИ

2.1 При проведении поверки должны применяться эталоны и вспомогательные средства, приведенные в таблице 2.

Таблица 2 – Наименование эталонов и вспомогательных средств поверки

№ пункта документа по поверке	Наименование эталонов, вспомогательных средств поверки и их основные метрологические и технические характеристики
7.4	Калибратор датчиков деформаций КМF-100 (рег. № 45796-10)

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик, поверяемых СИ с требуемой точностью.

3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

3.1 К проведению поверки допускаются лица, изучившие руководство по эксплуатации (далее - РЭ) на датчики, имеющие достаточные знания и опыт работы с датчиками.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1 При проведении поверки необходимо подробно изучить требования безопасности, указанные в РЭ датчиков и используемых средствах поверки и обеспечить их неукоснительное выполнение.
- 4.2 К поверке допускаются лица, прошедшие инструктаж по технике безопасности при работе на электроустановках.

5 УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ

5.1 При проведении поверки должны соблюдаться следующие нормальные условия измерений:

температура окружающей среды, °C
 относительная влажность воздуха, %
 20±5;
 30-80;

атмосферное давление, кПа (мм рт. ст.)
 84-106,7 (640-800).

6 ПОДГОТОВКА К ПОВЕРКЕ

- 6.1 Перед проведением поверки должны быть выполнены следующие подготовительные работы:
 - проверить наличие действующих свидетельств о поверке на средства поверки;
 - подготовить поверяемый датчик и средства поверки к работе в соответствии с эксплуатационной документацией на них;
 - датчик и средства поверки должны быть выдержаны в испытательном помешении не менее 3 ч.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр

При внешнем осмотре должно быть установлено соответствие датчика следующим требованиям:

- соответствие комплектности датчика прилагаемому РЭ на него;
- наличие маркировки: наименования и/или товарного знака производителя, заводского (серийного) номера датчика;
- отсутствие на корпусе датчика и соединительном кабеле механических повреждений.

Если перечисленные требования не выполняются, датчик признают непригодным к применению, дальнейшие операции поверки не производят.

7.2 Идентификация программного обеспечения

Проверка идентификационных данных программного обеспечения «DION Pro+», «DION 7», «PROTEUS» (далее – ПО) производится следующим образом: запустить соответствующее ПО, далее во вкладке «Справка» («Help») выбрать подменю «О программе…» («About…»)

На экране будет отображено наименование и версия ПО.

Данные, полученные по результатам идентификации ПО, должны соответствовать таблице 3.

Таблица 3

Идентификационное наименование ПО	DION Pro+	DION 7	PROTEUS
Номер версии (идентификационный номер ПО),	5.15	2.2	2.8.4
не ниже			

Если перечисленные требования не выполняются, датчик признают непригодным к применению, дальнейшие операции поверки не производят.

7.3 Опробование

При проведении опробования выполнить следующие операции:

- подключить датчик к машине испытательной, в составе которой он применяется:
- запустить на ПК, применяемом при работе датчика с испытательной машиной, ПО;
- выбрать канал измерений перемещений (деформаций).

Опробование датчика считается успешным, если на экран ПК выводятся значения по каналу измерений перемещений (деформаций)

Если перечисленные требования не выполняются, датчик признают непригодным к применению, дальнейшие операции поверки не производят.

7

7.4 Определение диапазона и погрешностей измерений перемещений (деформаций)

Определение диапазона и погрешностей измерений перемещений (деформаций) производится с помощью калибратора датчиков деформаций КМF-100 (далее - калибратор) в следующей последовательности:

- 7.4.1 Закрепить в соответствии с руководством по эксплуатации датчик на испытательной машине.
- 7.4.2 Установить калибратор в зоне досягаемости измерительными щупами датчика измерительной каретки калибратора.
- 7.4.3 Ножевой наконечник нижнего щупа датчика закрепить на нижнем неподвижном основании каретки калибратора, а ножевой наконечник верхнего щупа датчика закрепить в верхней подвижной каретке калибратора.
- 7.4.4 С помощью калибратора задать перемещение равное нижнему значению диапазона измерений датчика $M_{\tiny 3 man, Muh}$.
 - 7.4.5 Снять показания перемещений с регистрирующего прибора датчика $M_{\text{мин}}$.
- $7.4.6~\mathrm{C}$ помощью калибратора задать перемещение равное верхнему значению диапазона измерений датчика $M_{\scriptscriptstyle 2max, Makc}$.
 - 7.4.7 Снять показания перемещений с регистрирующего прибора датчика $M_{\text{макс}}$.
- 7.4.8 Провести аналогичные измерения в прямом (увеличивая величину перемещения) и обратном направлении (уменьшая величину перемещения) ещё как минимум в 10 точках равномерно распределенных в диапазоне измерений датчика. Измерения проводить не менее трех раз для каждой выбранной точки диапазона.
- 7.4.9 Определить абсолютную погрешность измерений перемещений (деформаций) в следующей последовательности:
 - вычислить среднее арифметическое значение результатов измерений в каждой точке выполненных измерений M_{cpi} :

$$M_{cp_i} = \frac{\sum M_i}{n}$$

где M_i – результат измерений в i-той точке, мм;

n - количество измерений (≥3)

- в каждой точке измерений определить абсолютную погрешность измерений /i:

$$\Delta_i = M_{cpi} - M_{эталі}$$

или относительную погрешности измерений перемещений (деформаций) δ_i в зависимости от диапазона измерений (см. таблицу 4):

$$\delta_i = \frac{M_{cpi} - M_{smaxi}}{M_{smaxi}} \times 100\%$$

где M_{2mani} - значение перемещений, заданное с помощью калибратора датчиков деформаций КМF-100 в i-той точке, мм;

- за окончательный результат принять наибольшую величину Δ_i и δ_i из всех рассчитанных значений.

Результаты поверки по данному пункту настоящей методики поверки считать положительными, если диапазоны измерений перемещений (деформаций) соответствуют значениям и погрешности измерений перемещений (деформаций) не выходят за пределы значений, приведенным в таблице 4.

Таблица 4

Модификация	Базовая	Диапазон	Пределы допускаемой
3580-050M	длина, мм от 4,5 до 16,0	измерений, мм от -0,5 до +0,5	погрешности измерений ±1 мкм в диапазоне от -0,2 мм включ. до +0,2 мм включ.; ±0,5 % в диапазонах менее -0,2 мм и св. +0,2 мм
3580-075M	от 4,5 до 16,0	от — 0,75 до +0,75	±2 мкм в диапазоне от -0,4 мм включ. до +0,4 мм включ.; ±0,5 % в диапазонах менее -0,4 мм и св. +0,4 мм
3580-150M	от 4,5 до	от – 1,5 до 0	±0,5 % в диапазоне от -1,5 мм до -0,4 мм не включ.; ±2 мкм в диапазоне от -0,4 мм до 0 мм включ.
	16,0	от 0 до +1,5	± 2 мкм в диапазоне от 0 мм до $\pm 0,4$ мм включ.; $\pm 0,5$ % в диапазоне св. $\pm 0,4$ мм до $\pm 1,5$ мм включ.
3580-200M	от 4,5 до	от – 2,0 до 0	±0,5 % в диапазоне от -2,0 мм до -0,6 мм не включ.; ±3 мкм в диапазоне от -0,6 мм до 0 мм включ.
	16,0	от 0 до +2,0	± 3 мкм в диапазоне от 0 мм до ± 0.6 мм включ.; ± 0.5 % в диапазоне св. ± 0.6 мм до ± 0.6 мм включ.
3580-500M	от 4,5 до	от – 5,0 до 0	±0,5 % в диапазоне от -5,0 мм до -1,2 мм не включ.; ±6 мкм в диапазоне от -1,2 мм до 0 мм включ.
	16,0	от 0 до +5,0	±6 мкм в диапазоне от 0 мм до +1,2 мм включ.; ±0,5 % в диапазоне св. +1,2 мм до +5,0 мм включ.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1 Результаты поверки оформляются протоколом в свободной форме, содержащим результаты поверки по каждому пункту раздела 7 настоящей методики поверки.
- 8.2 При положительных результатах поверки датчик признается пригодным к применению и выдается свидетельство о поверке установленной формы.

Знак поверки наносится на свидетельство о поверке в виде наклейки и (или) оттиска поверительного клейма.

8.3 При отрицательных результатах поверки, датчик признается непригодным к применению и выдается извещение о непригодности установленной формы с указанием основных причин.

Инженер OOO «Автопрогресс-М»

Tilly

М.В. Хлебнова