ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система измерительная установки 21-20 ООО «ЛУКОЙЛ-Пермнефтеоргсинтез»

Назначение средства измерений

Система измерительная установки 21-20 ООО «ЛУКОЙЛ-Пермнефтеоргсинтез» (далее - ИС) предназначена для измерений параметров технологического процесса в реальном масштабе времени (давления, перепада давления, температуры, объемного расхода, массового расхода, уровня, компонентного состава, нижнего концентрационного предела распространения пламени (далее - НКПР), влагосодержания).

Описание средства измерений

Принцип действия ИС основан на непрерывном измерении, преобразовании и обработке при помощи комплекса измерительно-вычислительного CENTUM модели VP (регистрационный номер в Федеральном информационном фонде (далее - регистрационный номер) 21532-14) (далее - CENTUM VP) (комплексный компонент ИС) входных сигналов, поступающих по измерительным каналам (далее - ИК) от первичных и промежуточных измерительных преобразователей (далее - ИП).

ИС осуществляет измерение параметров технологического процесса следующим образом:

- первичные ИП преобразуют текущие значения параметров технологического процесса в аналоговые унифицированные электрические сигналы силы постоянного тока от 4 до 20 мА и сигналы термопреобразователей сопротивления;
- аналоговые унифицированные электрические сигналы силы постоянного тока от 4 до 20 мА от первичных ИП поступают на входы преобразователей измерительных серии Н модели HiC2025 (регистрационный номер 40667-15) (далее HiC2025), преобразователей измерительных серии Н модели HiD2030SK (регистрационный номер 40667-15) (далее HiD2030SK) и далее на модули ввода аналоговых сигналов AAII41 CENTUM VP (далее AAII41) и AAII43 CENTUM VP (далее AAII43) (часть сигналов поступает на модули ввода аналоговых сигналов без барьеров искрозащиты);
- сигналы термопреобразователей сопротивления поступают на входы преобразователей измерительных серии Н модели HiD2081 (регистрационный номер 40667-15) (далее HiD2081) и преобразователей измерительных серии Н модели HiD2082 (регистрационный номер 40667-15) (далее HiD2082) и далее на AAI141, AAI143 и модули ввода аналоговых сигналов AAV144 CENTUM VP (далее AAV144).

Цифровые коды, преобразованные посредством модулей ввода аналоговых сигналов в значения физических параметров технологического процесса, отображаются на мнемосхемах мониторов операторских станций управления в виде числовых значений, гистограмм, трендов, текстов, рисунков и цветовой окраски элементов мнемосхем, а также интегрируется в базу данных ИС.

По функциональным признакам ИС делится на две независимые подсистемы: распределенная система управления технологическим процессом и система противоаварийной защиты. ИС включает в себя также резервные ИК.

Состав средств измерений, входящих в состав первичных ИП ИК, указан в таблице 1.

Таблица 1 - Средства измерений, входящие в состав первичных ИП ИК

Наименование ИК	Наименование первичного ИП ИК	Регистрационный номер
1	2	3
	Преобразователь давления измерительный 3051 модели 3051TG (далее - 3051TG)	14061-04
	Преобразователь давления измерительный 3051 модели 3051TG (далее - ПД 3051TG)	14061-10
	Преобразователь давления измерительный 3051 модели 3051CG (далее - ПД 3051CG)	14061-10
	Преобразователь давления измерительный 3051 модели 3051TG (далее - ПДИ 3051TG)	14061-15
ИК давления	Преобразователь давления измерительный EJA модели EJA 530 (далее - EJA 530)	14495-09
	Преобразователь давления измерительный EJX модели EJX 530 (далее - EJX 530)	28456-09
	Преобразователь давления измерительный Cerabar M PMC51 (далее - PMC51)	41560-09
	Преобразователь давления измерительный ОВЕН ПД 200 исполнения ОВЕН ПД 200-ДИ (далее - ОВЕН ПД 200-ДИ)	44389-10
	Преобразователь давления измерительный 3051 модели 3051CD (далее - 3051CD)	14061-99
	Преобразователь давления измерительный 3051 модели 3051CD (далее - ПД 3051CD)	14061-10
	Преобразователь давления измерительный 3051 модели 3051CD (далее - ПДИ 3051CD)	14061-15
	Преобразователь давления измерительный 3051 модели 3051CD (далее - ПДИ 3051CD)	14061-15
ИК перепада	Преобразователь давления измерительный 3051S модели 3051SAM (далее - 3051SAM)	24116-13
давления	Преобразователь давления измерительный EJX модели EJX 110 (далее - EJX 110)	28456-09
	Преобразователь давления измерительный EJX модели EJX 120 (далее - EJX 120)	28456-09
	Датчик давления Метран-150 модели 150CD (далее - Метран-150 CD)	32854-13
	Преобразователь измерительный давления и уровня Deltapilot исполнения М модели FMB52 (далее - FMB52)	43650-10
ИК температуры	Термопреобразователь сопротивления с пленочным чувствительным элементом ТСП Метран-200 модели ТСП Метран-246 (далее - ТСП Метран-246)	26224-12
	Термопреобразователь сопротивления ДТС (далее - ДТС)	28354-10
	Термометр сопротивления платиновый ТСПТ модификации ТСПТ 102 (далее - ТСПТ 102)	36766-09

1	2	3
	Термопреобразователь сопротивления ТСП, ТСМ конструктивного исполнения ТСП 9204 (далее - ТСП 9204)	50071-12
MV manyanamany	Датчик температуры ТСПТ Ex (далее - ТСПТ Ex)	57176-14
ИК температуры	Датчик температуры КТХА Ex (далее - КТХА Ex)	57178-14
	Измеритель влажности и температуры микропроцессорный Ивит-М модификации Ивит-М.Т (далее - Ивит-М.Т)	53527-13
	Расходомер электромагнитный Promag (далее - Promag)	14589-09
	Расходомер электромагнитный 8700 с датчиком расхода 8705 и измерительным преобразователем 8732E (далее - 8700)	14660-12
	Расходомер-счетчик вихревой 8800 (далее - 8800)	14663-12
ИК объемного	Расходомер вихревой Prowirl с вихревым преобразователем расхода F и измерительным преобразователем Prowirl 72 (далее - Prowirl 72 F)	15202-09
расхода	Счетчик-расходомер электромагнитный ADMAG модификации AXF (далее - ADMAG AXF)	17669-09
	Расходомер-счетчик ультразвуковой Prosonic Flow 93P (далее - Prosonic Flow 93P)	29674-12
	Расходомер ультразвуковой UFM 500-030 исполнения UFM 500F-030 HT (далее - UFM 500F-030 HT)	48218-11
	Ротаметр RAMC (далее - RAMC)	50010-12
	Счетчик-расходомер массовый Micro Motion модификации СМF модели СМF200 с преобразователем серии 1700 (далее - CMF200/1700)	45115-10
ИК массового расхода	Счетчик-расходомер массовый Micro Motion модификации СМF модели СМF200 с преобразователем серии 2700 (далее - CMF200/2700)	45115-10
	Счетчик-расходомер массовый Micro Motion модификации СМF модели СМF300 с преобразователем серии 1700 (далее - CMF300/1700)	45115-10
	Счетчик-расходомер массовый Micro Motion модификации СМF модели СМF300 с преобразователем серии 2700 (далее - CMF300/2700)	45115-10

1	2	3
	Счетчик-расходомер массовый Micro Motion модификации CMF модели CMF400 с преобразователем серии 1700 (далее - CMF400/1700)	45115-10
ИК массового расхода	Счетчик-расходомер массовый Micro Motion модификации CMF модели CMF400 с преобразователем серии 2700 (далее - CMF400/2700)	45115-10
	Счетчик-расходомер газа массовый MFT исполнения 454FT (далее - 454FT)	52789-13
	Преобразователь уровня буйковый САПФИР- 22МП-ДУ (далее - САПФИР-22МП-ДУ)	21233-07
	Уровнемер радарный серии 5600 (модель 5601) (далее - 5601)	25548-08
	Уровнемер 5400 исполнения 5402 (далее - 5402)	30247-11
ИК уровня	Уровнемер микроимпульсный Levelflex FMP5* исполнения FMP51 (далее - FMP51)	47249-11
	Преобразователь уровня измерительный буйковый 244LD (далее - 244LD)	48164-11
	Уровнемер 5300 исполнения 5301 (далее - 5301)	53779-13
	Уровнемер 5300 исполнения 5302 (далее - 5302)	53779-13
ИК компонентного состава	Газоанализатор THERMOX серий WDG-IV и WDG-HPII модификации WDG-IVC/IQ (далее - THERMOX)	38307-08
ИК НКПР	Газоанализатор Millennium II Basic (далее - Millennium II Basic)	40635-09
ИК влагосодержания	ИК Ивит-М.Т	

ИС выполняет следующие функции:

- автоматизированное измерение, регистрация, обработка, контроль, хранение и индикация параметров технологического процесса;
- предупредительная и аварийная сигнализация при выходе параметров технологического процесса за установленные границы и при обнаружении неисправности в работе оборудования;
- управление технологическим процессом в реальном масштабе времени; противоаварийная защита оборудования установки;
- отображение технологической и системной информации на операторской станции управления;
 - накопление, регистрация и хранение поступающей информации;
 - самодиагностика;
 - автоматическое составление отчетов и рабочих (режимных) листов;
- защита системной информации от несанкционированного доступа программным средствам и изменения установленных параметров.

Программное обеспечение

Программное обеспечение (далее - ПО) ИС обеспечивает реализацию функций ИС.

Защита ПО ИС от непреднамеренных и преднамеренных изменений и обеспечение его соответствия утвержденному типу осуществляется путем идентификации, защиты от несанкционированного доступа.

Идентификационные данные ПО ИС приведены в таблице 2.

Таблица 2 - Идентификационные данные ПО ИС

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	CENTUM VP
Номер версии (идентификационный номер) ПО	не ниже R5.04
Цифровой идентификатор ПО	-
Алгоритм вычисления цифрового идентификатора ПО	-

ПО ИС защищено от несанкционированного доступа, изменения алгоритмов и установленных параметров путем введения логина и пароля, ведения доступного только для чтения журнала событий.

Уровень защиты ПО ИС «средний» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Основные технические характеристики ИС представлены в таблице 3.

Таблица 3 - Основные технические характеристики ИС

Таблица 3 - Основные технические характеристики ИС	
Наименование характеристики	Значение
Параметры электрического питания:	
- напряжение переменного тока, В	380^{+57}_{-76} ; 220^{+22}_{-33}
- частота переменного тока, Гц	50±1
Потребляемая мощность, кВ·А, не более	30
Габаритные размеры отдельных шкафов, мм, не более:	
- ширина	1600
- высота	2000
- глубина	1000
Масса отдельных шкафов, кг, не более	400
Условия эксплуатации:	
а) температура окружающей среды, °С:	
- в месте установки вторичной части ИК	от +15 до +25
- в местах установки первичных ИП ИК	от -40 до +50
б) относительная влажность, %:	
- в месте установки вторичной части ИК	от 20 до 80,
	без конденсации влаги
- в местах установки первичных ИП ИК	не более 95,
	без конденсации влаги
в) атмосферное давление, кПа	от 84,0 до 106,7 кПа
В) атмосферное давление, киза	

Примечание - ИП, эксплуатация которых в указанных диапазонах температуры окружающей среды и относительной влажности не допускается, эксплуатируются при температуре окружающей среды и относительной влажности, указанных в технической документации на данные ИП.

Метрологические характеристики вторичной части ИК ИС приведены в таблице 4.

Таблица 4 - Метрологические характеристики вторичной части ИК ИС

таблица 4 - г	та олица 4 - метрологические характеристики вторичной части итс ис							
Тип барьера	Тип модуля	Пределы допускаемой основной погрешности, % от						
искрозащиты	ввода/вывода	диапазона измерений						
HiC2025		a +0.15.0/						
HiD2030SK	A A T1 // 1	g ±0,15 %						
HiD2081	AAI141,	$\mathbf{p} + (0.0005 + 0.0005 (1.000)^2 + (0.001 (1.000))^2 = 0.0005 (1.000) + (0.0005 (1.000))^2 = 0.0005 (1.000) + (0.0005 (1.000))^2 = 0.0005 (1.000) + (0.0005 (1.000))^2 = 0.0005 (1.000) + (0.0005 (1.000))^2 = 0.0005 (1.000) + (0.0005 (1.000))^2 = 0.0005 (1.000) + (0.0005 (1.000))^2 = 0.0005 (1.000) + (0.$						
HiD2082	AAI143	$D = \pm \sqrt{(0,0005 \times t_{\text{\tiny H3M}} + 0,0005 \times (t_{\text{\tiny max}} - t_{\text{\tiny min}}) + 0,1)^2 + (0,001 \times (t_{\text{\tiny max}} - t_{\text{\tiny min}}))^2}$						
-		g ±0,10 %						
HiC2025		g ±0,23 %						
HiD2081	AAV144	$(0.0005 \times +0.0005 \times t -t.) +0.001 \times t -t.) +0.1)^{2} +$						
HiD2082		$D = \pm \sqrt{\frac{(0,0005 \times_{_{_{_{H3M}}}} + 0,0005 \times (t_{_{max}} - t_{_{min}}) + 0,001 \times (t_{_{max}} - t_{_{min}}) + 0,1)^{2} + (0,001 \times (t_{_{max}} - t_{_{min}}))^{2}} + (0,001 \times (t_{_{max}} - t_{_{min}}))^{2}}, ^{\circ}C$						

Примечание - Приняты следующие обозначения:

д- приведенная погрешность, %;

 Δ - абсолютная погрешность, в единицах измеряемой величины;

 $t_{_{\rm \! H3M}}$ - измеренное ИК значение температуры, °С;

 t_{max} - верхний предел диапазона измерений температуры ИК, °С;

 t_{min} - нижний предел диапазона измерений температуры ИК, °С.

Метрологические характеристики ИК ИС приведены в таблице 5.

Таблица 5 - Метрологические характеристики ИК ИС

	opunostno vanatranno	•	Метрологические характеристики измерительных компонентов ИК					
Метрологические характеристики ИК			Пер	Первичный ИП		Вторичный ИП		
		Пределы			Тип		Пределы	
Наименование	Диапазоны	допускаемой	Тип (выходной	Пределы допускаемой	барьера	Типа модуля	допускаемой	
ИК	измерений	основной	сигнал)	основной погрешности	искро-	ввода/вывода	основной	
		погрешности			защиты		погрешности	
1	2	3	4	5	6	7	8	
		g ±0,18 %			НiC2025 или HiD2030 SK	ААІ141 или ААІ143	g ±0,15 %	
ИК давления	от 0 до 1,60 МПа; от -0,10 до 5,52 МПа ¹⁾	g ±0,26 при соотношении ДИ _{мах} /ДИ 3051TG менее чем 5:1; g ±0,27 % при соотношении ДИ _{мах} /ДИ 3051TG более чем 10:1	3051TG (от 4 до 20 мА)	g: ±0,04 при соотношении ДИ _{мах} /ДИ менее чем 5:1; g: ±0,065 % при соотношении ДИ _{мах} /ДИ более чем 10:1	HiC2025	AAV144	g ±0,23 %	

1	2	3	4	5	6	7	8
ИК давления	от 0 до 400 кПа; от 0 до 0,10 МПа; от 0 до 0,25 МПа; от -0,10 до 0,206 МПа ¹⁾ ; от 0 до 0,40 МПа; от 0 до 0,60 МПа; от 0 до 1,00 МПа; от -0,10 до 1,034 МПа ¹⁾	g ±0,18 %	ПЛ 3051ТG	g ±0,04 при соотношении ДИ _{тах} /ДИ≤5; g ±0,065 % при соотношении ДИ _{тах} /ДИ≤10	НіС2025 или НіD2030 SK	ААІ141 или ААІ143	g ±0,15 %
	от 0 до 1,00 МПа; от 0 до 2,50 МПа; от 0 до 4,00 МПа; от 0 до 5,00 МПа; от -0,1 до 5,515 МПа ¹⁾ от 0 до 6,00 МПа; от 0 до 6,30 МПа; от -0,10 до 27,579 МПа ¹⁾	g ±0,26 при соотношении ДИ _{мах} /ДИ≤5 ПД 3051ТG; g ±0,27 % при соотношении ДИ _{мах} /ДИ≤10 ПД 3051ТG			HiC2025	AAV144	g ±0,23 %
	от -3000 до 0 Па; от -1500 до 500 Па; от -500 до 500 Па; от -200 до 3000 Па; от 0 до 100 Па; от 0 до 5000 Па; от -6,22 до 6,2 кПа ¹⁾ ; от -62 до 62 кПа ¹⁾	g ±0,18 %	ПД 3051CG (от 4 до 20 мА)	g ±0,04 при соотношении ДИ _{max} /ДИ≤5; g ±0,065 % при соотношении ДИ _{max} /ДИ≤10	НіС2025 или НіD2030 SK	AAI141 или AAI143	g ±0,15 %

1	2	3	4	5	6	7	8
	от -3000 до 0 Па; от -1500 до 500 Па; от -500 до 500 Па; от -200 до 3000 Па; от 0 до 100 Па; от 0 до 5000 Па; от -6,22 до 6,2 кПа ¹⁾ ; от -62 до 62 кПа ¹⁾	$g \pm 0,26$ при соотношении ДИ _{max} /ДИ \leq 5 ПД 3051CG; $g \pm 0,27$ % при соотношении ДИ _{max} /ДИ \leq 10 ПД 3051CG	ПД 3051CG (от 4 до 20 мА)	g ±0,04 при соотношении ДИ _{max} /ДИ≤5; g ±0,065 % при соотношении ДИ _{max} /ДИ≤10	HiC2025	AAV144	g ±0,23 %
ИК давления	от 0 до 0,60 МПа; от -0,10 до 1,034 МПа ¹⁾	g от ±0,18 % до ±0,85 %	ПДИ 3051TG (от 4 до 20 мА)	g от ±0,04 до ±0,75 %	НiC2025 или HiD2030 SK	AAI141 или AAI143	g ±0,15 %
		g: от ±0,26 % до ±0,87 %			HiC2025	AAV144	g ±0,23 %
	от 0 до 1 МПа; от 0 до 2 МПа ¹⁾	g от ±0,28 до ±0,69 %	ЕЈА 530 (от 4 до 20 мА)	g от ±0,2 до ±0,6 %	HiC2025 или HiD2030 SK	AAI141 или AAI143	g ±0,15 %
		g от ±0,34 до ±0,71 %			HiC2025	AAV144	g ±0,23 %

1	2	3	4	5	6	7	8
	от 0 до 60 кПа; от 0 до 400 кПа; от -100 до 200 кПа ¹⁾ ; от 0 до 600 кПа	g от ±0,20 до ±0,54 %			HiC2025 или HiD2030 SK	AAI141 или AAI143	g ±0,15 %
ИК давления	от 0 до 1,0 МПа; от 0 до 1,6 МПа; от 0 до 2,5 МПа; от 0 до 4,0 МПа; от 0 до 6,0 Мпа; от 0 до 10,0 МПа; от -0,1 до 2,0 МПа ¹⁾ ; от -0,1 до 10,0 МПа ¹⁾	g от ±0,28 до ±0,57 %	ЕЈХ 530 (от 4 до 20 мА)	g от ±0,10 до ±0,46 %	HiC2025	AAV144	g ±0,23 %
	от 0 до 1,6 МПа; от 0 до 4,0 МПа; от -0,1 до 4,0 МПа ¹⁾	g ot ±0,24 %	РМС51 (от 4 до 20 мА)	g ±0,15 %	НіС2025 или НіD2030 SK	AAI141 или AAI143	g ±0,15 %
		g : от ±0,31 %			HiC2025	AAV144	g ±0,23 %
	от 0 до 1,0 МПа; от 0 до 2,5 МПа	g: ot ±0,33 %	ОВЕН ПД 200- ДИ (от 4 до 20 мА)	g ±0,25 %	HiC2025 или HiD2030 SK	AAI141 или AAI143	g ±0,15 %
		g: ot ±0,38 %			HiC2025	AAV144	g ±0,23 %

1	2	3	4	5	6	7	8
ИК перепада	от 0 до 40,0 кПа; от -62,2 до 62,2 кПа ¹⁾ ;	g ±0,19 при соотношении ДИ _{мах} /ДИ 3051CD менее чем 10:1; g ±0,24 % при соотношении ДИ _{мах} /ДИ 3051CD более чем 10:1	3051CD (от 4 до 20 мА)	g ±0,075 при соотношении ДИ _{мах} /ДИ менее чем 10:1; g ±0,15 % при соотношении ДИ _{мах} /ДИ более чем 10:1	НіС2025 или НіD2030 SK	AAI141 или AAI143	g ±0,15 %
давления		g ±0,27 при соотношении ДИ _{мах} /ДИ 3051CD менее чем 10:1; g ±0,31 % при соотношении ДИ _{мах} /ДИ 3051CD более чем 10:1			HiC2025	AAV144	g ±0,23 %

<u> 11рооолжение 1</u>	2	3	4	5	6	7	8
иК перепада давления от о	от 0 до 6,90 кПа; от 0 до 7,05 кПа; от 0 до 16,00 кПа; от 0 до 20,10 кПа; от 0 до 25,00 кПа; от 0 до 25,89 кПа; от 0 до 26,61 кПа; от 0 до 30,49 кПа; от 0 до 32,26 кПа; от 0 до 38,25 кПа; от 0 до 39,43 кПа; от 0 до 40,00 кПа; от 0 до 44,25 кПа;	g ±0,18 %	ПД 3051CD (от 4 до 20 мА)	g ±0,04 при соотношении ДИ _{мах} /ДИ≤5; g ±0,065 % при соотношении ДИ _{мах} /ДИ≤10	НіС2025 или НіD2030 SK	AAI141 или AAI143	g ±0,15 %
	от 0 до 60,00 кПа; от 0 до 73,51 кПа; от 0 до 100,00 кПа; от 0 до 250,00 кПа; от 29,83 до 46,36 кПа от 0 до 1,60 МПа; от -62,20 до 62,20 кПа ¹⁾ ; от -248 до 248 кПа ¹⁾ ; от -0,5 до 2,07 МПа ¹⁾	$g \pm 0,26$ при соотношении ДИ _{max} /ДИ \leq 5 ПД 3051CD; $g \pm 0,27$ % при соотношении ДИ _{max} /ДИ \leq 10 ПД 3051CD			HiC2025	AAV144	g ±0,23 %
	от 0 до 40,00 кПа; от 0 до 1,00 МПа; от -62,20 до 62,20 кПа ¹⁾ ;	g от ±0,18 до ±0,87 %	ПДИ 3051CD (от 4 до 20 мА)	g от ±0,04 до ±0,77 %	НiC2025 или HiD2030 SK	AAI141 или AAI143	g ±0,15 %
	от -248 до 248 кПа ¹⁾ ; от -0,5 до 2,07 МПа ¹⁾	g от ±0,26 до ±0,89 %			HiC2025	AAV144	g ±0,23 %

<u> 11рооолжение 1</u>	2	3	4	5	6	7	8
	от 0 до 101,33 кПа; от -250 до 250 кПа ¹⁾	g от ±0,20 до ±0,63 %	3051SAM (от 4 до 20 мА)	g от ±0,1 до ±0,55 %	HiC2025 или HiD2030 SK	AAI141 или AAI143	g ±0,15 %
		g от ±0,28 до ±0,66 %			HiC2025	AAV144	g ±0,23 %
	от 0 до 60 кПа; от -100 до 100 кПа ¹⁾	g от ±0,18 до ±0,69 %	ЕЈХ 110 (от 4 до 20 мА)	g от ±0,04 до ±0,60 %	НiC2025 или HiD2030 SK	AAI141 или AAI143	g ±0,15 %
		g от ±0,26 до ±0,71 %			HiC2025	AAV144	g ±0,23 %
ИК перепада давления	от 0 до 100 Па; от -1 до 1 кПа ¹⁾	g от ±0,20 до ±0,69 %	EJX 120 (от 4 до 20 мА)	g от ±0,09 до ±0,60 %	HiC2025 или HiD2030 SK	AAI141 или AAI143	g ±0,15 %
		g от ±0,28 до ±0,71 %			HiC2025	AAV144	g ±0,23 %
	от 0 до 100 Па; от -0,63 до 0,63 кПа ¹⁾	g ±0,58 %	Метран-150 CD (от 4 до 20 мА)	g ±0,5 %	НiC2025 или HiD2030 SK	AAI141 или AAI143	g ±0,15 %
		g: ±0,61 %			HiC2025	AAV144	g ±0,23 %
	от -0,01 до 1,00 МПа ¹⁾	g ±0,28 %	FMB52 (от 4 до 20 мА)	g: ±0,2 %	HiC2025 или HiD2030 SK	AAI141 или AAI143	g ±0,15 %
		g: ±0,34 %			HiC2025	AAV144	g ±0,23 %

11 <i>рооолжение п</i>	2	3	4	5	6	7	8
	от -50 до +120 °C	Δ: ±2,01 °C	ТСП Метран-246	Δ: ±(0,6+0,01· t), °C	HiD2081 или HiD2082	AAI141 или AAI143	Δ: ±0,3 °C
		Δ: ±2,05 °C	(HCX Pt 100)	Δ. ±(0,0+0,01 μ), ε	HiD2081 или HiD2082	AAV144	Δ: ±0,45 °C
	от -50 до +150 °C	Δ: ±1,21 °C					Δ: ±0,34 °C
	от 0 до +150 °C	Δ: ±1,21 °C				ААІ141 или	Δ: ±0,30 °C
	от 0 до +300 °C	Δ: ±2,06 °C				AAI141 или AAI143	Δ: ±0,50 °C
	от -196 до 660 °С ¹⁾	см. примечание 4	ДТС	Δ: ±(0,3+0,005· t), °C	HiD2081 или	AAII+3	см. таблицу 4
	от -50 до +150 °C	Δ: ±1,29 °C	(HCX Pt 100)		или HiD2082		Δ: ±0,52 °C
ИК температуры	от 0 до +150 °C	Δ: ±1,25 °C			111111111111111111111111111111111111111		Δ: ±0,43 °C
	от 0 до +300 °C	Δ: ±2,16 °C				AAV144	Δ: ±0,77 °C
	от -196 до 660 °С ¹⁾	см. примечание 4					см. таблицу 4
	от -50 до +150 °C	Δ: ±1,21 °C		Δ: ±(0,3+0,005· t), °C	HiD2081		Δ: ±0,34 °C
	от 0 до +150 °C	Δ: ±1,21 °C			или HiD2082	AAI141 или AAI143	Δ: ±0,30 °C
	от -196 до 660 °С ¹⁾	см. примечание 4	ТСПТ 102				см. таблицу 4
	от -50 до +150 °C	Δ: ±1,29 °C	(HCX Pt 100)	$\Delta = (0,3+0,003, t), C$	HiD2081		Δ: ±0,52 °C
	от 0 до +150 °C	Δ: ±1,25 °C			или	AAV144	Δ: ±0,43 °C
	от -196 до 660 °С ¹⁾	см. примечание 4			HiD2082	71/11/1	см. таблицу 4
	от 0 до +150 °C	Δ: ±1,21 °C			HiD2081	AAI141 или	Δ: ±0,30 °C
	от -60 до 200 °С ¹⁾	см. примечание 4	ТСП 9204	Δ: ±(0,3+0,005· t), °C	или HiD2082	AAI141 MIN AAI143	см. таблицу 4
	от 0 до +150 °C	Δ: ±1,25 °C	(HCX Pt 100)	Δ. ±(0,5±0,005· ι), C	HiD2081		Δ: ±0,43 °C
	от -60 до 200 °С ¹⁾	см. примечание 4			или HiD2082	AAV144	см. таблицу 4

11рооолжение I	, 2	3	4	5	6	7	8
	от -50 до +50 °C	Δ: ±1,12 °C					
	от -50 до +100 °C	Δ: ±1,13 °C					
	от -50 до +150 °C	Δ: ±1,58 °C					
	от -50 до +200 °C	Δ: ±1,97 °C					
	от -50 до +300 °C	Δ: ±2,76 °C					
- -	от 0 до +50 °C	Δ: ±1,11 °C			HiC2025		
	от 0 до +100 °C	Δ: ±1,12 °C			ИЛИ	AAI141 или AAI143	g ±0,15 %
	от 0 до +120 °C	Δ: ±1,12 °C			HiD2030		g. ±0,13 %
	от 0 до +150 °C	Δ: ±1,13 °C			SK		
	от 0 до +160 °C	Δ: ±1,26 °C					
	от 0 до +200 °C	Δ: ±1,58 °C					
	от 0 до +300 °C	Δ: ±2,37 °C					
	от -100 до +450 °С ¹⁾	CM.		Δ : ±1,0 °C (для t_n : от 10			
ИК		примечание 4	ТСПТ Ех	до 150 °C включ.);			
температуры	от -50 до +50 °C	Δ: ±1,13 °C	(от 4 до 20 мА)	Δ : ±0,007·t _n °C (для t _n : св. 150 до 800°C включ.)			
	от -50 до +100 °C	Δ: ±1,17 °C					
	от -50 до +150 °C	Δ: ±1,63 °C					
	от -50 до +200 °C	Δ: ±2,03 °C					
	от -50 до +300 °C	Δ: ±2,84 °C					
	от 0 до +50 °C	Δ: ±1,11 °C					
	от 0 до +100 °C	Δ: ±1,13 °C			HiC2025	AAV144	g ±0,23 %
	от 0 до +120 °C	Δ: ±1,15 °C			11102023	7171	g, ±0,23 /0
	от 0 до +150 °C	Δ: ±1,17 °C					
	от 0 до +160 °C	Δ: ±1,30 °C					
	от 0 до +200 °C	Δ: ±1,63 °C					
	от 0 до +300 °C	Δ: ±2,44 °C]				
	от -100 до +450 °С ¹⁾	CM.					
		примечание 4					

ИК температуры от -50 до +100 °C ∆: ±0,50 °C от ±0,63 °C ∆: ±0,63 °C ∆: ±0,63 °C ∆: ±0,77 °C ∆: ±0,07 °C	<u> 11рооолжение т</u> 1	2	3	4	5	6	7	8
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		от -50 до +50 °C	Δ: ±0,36 °C					Δ: ±0,21 °C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	i							Δ: ±0,28 °C
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ı	от -50 до +150 °C	Δ: ±0,63 °C					Δ: ±0,35 °C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		от -50 до +200 °C	Δ: ±0,77 °C					Δ: ±0,42 °C
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		от -50 до +300 °C	Δ: ±1,03 °C					Δ: ±0,56 °C
$ \begin{tabular}{l lllllllllllllllllllllllllllllllllll$		от 0 до +50 °C	Δ: ±0,33 °C					Δ: ±0,16 °C
ИК температуры $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		от 0 до +100 °C						Δ: ±0,23 °C
ИК температуры $\begin{array}{c ccccccccccccccccccccccccccccccccccc$								Δ: ±0,26 °C
ИК температуры $\begin{array}{c ccccccccccccccccccccccccccccccccccc$			·					Δ: ±0,30 °C
ИК температуры $\begin{array}{c ccccccccccccccccccccccccccccccccccc$,					Δ: ±0,31 °C
ИК температуры $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,					Δ: ±0,37 °C
ИК температуры $OT - 100 \text{ до} + 450 \text{ °C}$ примечание 4 $OT - 50 \text{ до} + 50 \text{ °C}$ $OT - 50 \text{ до} + 50 \text{ °C}$ $OT - 50 \text{ до} + 100 \text{ °C}$ $OT - 50 \text{ до} + 150 \text{ °C}$ $OT - 50 \text{ до} + 200 \text{ °C}$ $OT - 50 \text{ до} + 200 \text{ °C}$ $OT - 50 \text{ до} + 300 \text{ °C}$ $OT - 50 \text{ до} + 300 \text{ °C}$ $OT - 50 \text{ до} + 100 \text{ °C}$ $OT - 50 \text{ до} + 100 \text{ °C}$ $OT - 50 \text{ до} + 100 \text{ °C}$ $OT - 50 \text{ до} + 100 \text{ °C}$ $OT - 50 \text{ до} + 100 \text{ °C}$ $OT - 50 \text{ до} + 100 \text{ °C}$ $OT - 50 \text{ дo} + 100 \text{ °C}$ $OT - 50 \text{ go} + 100 \text{ °C}$ $OT - 5$		от 0 до +300 °C	Δ: ±1,00 °C					Δ: ±0,50 °C
Температуры $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		от -100 ло +450 °C ¹⁾				или		см. таблицу 4
Температуры $\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1		Δ : ±(0,15+0,002· t), °C			
ot -50 μο +150 °C Δ : ±0,76 °C ot -50 μο +200 °C Δ : ±0,92 °C ot -50 μο +300 °C Δ : ±1,26 °C ot 0 μο +50 °C Δ : ±0,36 °C ot 0 μο +100 °C Δ : ±0,53 °C ot 0 μο +120 °C Δ : ±0,60 °C	температуры	' '	,	(HCX Pt 100)	= = (0,12 : 0,002 10),			Δ: ±0,30 °C
οτ -50 до +200 °C Δ: ±0,92 °C οτ -50 до +300 °C Δ: ±1,26 °C οτ 0 до +50 °C Δ: ±0,36 °C οτ 0 до +100 °C Δ: ±0,53 °C οτ 0 до +120 °C Δ: ±0,60 °C		, ,	·					Δ: ±0,41 °C
οτ -50 до +300 °C Δ: ±1,26 °C οτ 0 до +50 °C Δ: ±0,36 °C οτ 0 до +100 °C Δ: ±0,53 °C οτ 0 до +120 °C Δ: ±0,60 °C AAV144 Δ: ±0, Δ: ±0, Δ: ±0,			,					Δ: ±0,52 °C
от 0 до +50 °C Δ: ±0,36 °C от 0 до +100 °C Δ: ±0,53 °C от 0 до +120 °C Δ: ±0,60 °C AAV144 Δ: ±0, Δ: ±0, Δ: ±0,	,	` '		-				Δ: ±0,63 °C
от 0 до +100 °C Δ : ±0,53 °C от 0 до +120 °C Δ : ±0,60 °C AAV144 Δ : ±0, Δ : ±0, Δ : ±0,	,		,					Δ: ±0,86 °C
от 0 до +120 °C		, ,	·					Δ: ±0,21 °C
	_	, ,	,				AAV144	Δ: ±0,32 °C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			·					Δ: ±0,37 °C
								Δ: ±0,43 °C Δ: ±0,45 °C
			,					Δ: ±0,43 °C
			,					Δ: ±0,77 °C
								Δ. ±0,77 C
$\left \text{ от -100 до +450 °C}^{1} \right \stackrel{\text{см.}}{\text{примечание 4}} $		от -100 до +450 °С¹)						см. таблицу 4

1	2	3	4	5	6	7	8
	от -40 до +300 °C от -40 до +500 °C от -40 до +600 °C от -40 до +1000 °C от 0 до +1000 °C от -200 до +1300 °C ¹⁾	Δ: ±2,27 °C Δ: ±3,11 °C Δ: ±3,68 °C Δ: ±5,98 °C Δ: ±5,75 °C см. примечание 4	KTXA Ex	Δ: ±2,0 °C (для t _n : от 50 до 400 °C включ.);	НiC2025 или HiD2030 SK	AAI141 или AAI143	g ±0,15 %
ИК температуры	от -40 до +300 °C от -40 до +500 °C от -40 до +600 °C от -40 до +1000 °C от 0 до +1000 °C от -200 до +1300 °C ¹⁾	Δ: ±2,37 °C Δ: ±3,27 °C Δ: ±3,88 °C Δ: ±6,30 °C Δ: ±6,06 °C	(от 4 до 20 мА)	Δ : $\pm 0,005 \cdot t_n$ °C (для t_n : св. 400 до 1500°С включ.)	HiC2025	AAV144	g ±0,23 %
	от -40 до +50 °C	Δ: ±1,66 °C	Ивит-М.Т (от 4 до 20 мА)	Δ: ±1,5 °C	-	AAI141 или AAI143	g ±0,10 %
ИК объемного расхода	от 0 до 12,5 м ³ /ч	см. примечание 4	Promag (от 4 до 20 мА)	d: ±0,5 % при поверке проливным методом; d: ±1,0 % при поверке имитационным методом	НіС2025 или НіD2030 SK НіC2025	ААІ141 или ААІ143 ААV144	g ±0,15 % g ±0,23 %

1	2	3	4	5	6	7	8
	от 0 до 6,28 м ³ /ч (шкала от 0 до 6 т/ч); от 0 до 25,21 м ³ /ч (шкала от 0 до 25 т/ч); от 0 до 25,91 м ³ /ч (шкала от 0 до	CM.	8700		НіС2025 или НіD2030 SK	ААІ141 или ААІ143	g ±0,15 %
	25 т/ч); от 0 до 123,46 м ³ /ч (шкала от 0 до 120 т/ч); от 0 до 141,77 м ³ /ч (шкала от 0 до 130 т/ч)	примечание 4	(от 4 до 20 мА)	d: ±0,5 %	HiC2025	AAV144	g ±0,23 %
ИК объемного расхода	от 0 до 4,00 м ³ /ч; от 0 до 5,00 м ³ /ч; от 0 до 6,00 м ³ /ч; от 0 до 6,30 м ³ /ч;			δ (исполнение 8800DF): для жидкости: $\pm 0,65$ % (Re ≥ 20000); ± 2 %	HiC2025 или HiD2030 SK	AAI141 или AAI143	g ±0,15 %
	от 0 до 6,69 м ³ /ч (шкала от 0 до 6,3 т/ч); от 0 до 10,00 м ³ /ч; от 0 до 14,00 м ³ /ч; от 0 до 16,00 м ³ /ч; от 0 до 20,00 м ³ /ч; от 0 до 21,12 м ³ /ч (шкала от 0 до 20 т/ч); от 0 до 25,00 м ³ /ч; от 0 до 32,00 м ³ /ч;	см. примечание 4	8800 (от 4 до 20 мА)	(10000≤Re<20000); ±6 % (5000≤Re<10000); для газа и пара: ±1 % (Re≥15000); ±2 % (10000≤Re<15000); ±6 % (5000≤Re<10000) g: ±0,025 % (погрешность преобразования в токовый выходной сигнал)	HiC2025	AAV144	g ±0,23 %

1	2	3	4	5	6	7	8
	от 0 до 33,79 м ³ /ч (шкала от 0 до 32 т/ч); от 0 до 35,29 м ³ /ч (шкала от 0 до 35 т/ч); от 0 до 50,00 м ³ /ч; от 0 до 53,23 м ³ /ч (шкала от 0 до			δ (исполнение 8800DF):	НіС2025 или НіD2030 SK	ААІ141 или ААІ143	g ±0,15 %
ИК объемного расхода	(шкала от 0 до 50 т/ч); от 0 до 63,00 м³/ч; от 0 до 70,22 м³/ч (шкала от 0 до 800 кг/ч); от 0 до 90,64 м³/ч (шкала от 0 до 800 кг/ч); от 0 до 250,00 м³/ч; от 0 до 546,79 м³/ч (шкала от 0 до 4,5 т/ч); от 0 до 630,00 м³/ч; от 0 до 1081,74 м³/ч (шкала от 0 до 6,3 т/ч); от 0 до 1187,50 м³/ч (шкала от 0 до 9,5 т/ч); от 0 до 1250,00 м³/ч; от 0 до 1584,79 м³/ч (шкала от 0 до 10 т/ч);	см. примечание 4	8800 (от 4 до 20 мА)	для жидкости: ±0,65 % (Re≥20000); ±2 % (10000≤Re<20000); ±6 % (5000≤Re<10000); для газа и пара: ±1 % (Re≥15000); ±2 % (10000≤Re<15000); ±6 % (5000≤Re<10000) g ±0,025 % (погрешность преобразования в токовый выходной сигнал)	HiC2025	AAV144	g ±0,23 %

1	2	3	4	5	6	7	8
Ť	от 0 до 1695,66 м ³ /ч (шкала от 0 до 4 т/ч); от 0 до 1701,10 м ³ /ч (шкала от 0 до 14 т/ч); от 0 до 2089,36 м ³ /ч (шкала от 0 до	J		δ (исполнение 8800DF): для жидкости: ±0,65 % (Re≥20000); ±2 %	НiC2025 или HiD2030 SK	AAI141 или AAI143	g ±0,15 %
ИК объемного расхода	13 т/ч); от 0 до 2691,07 м³/ч (шкала от 0 до 25 т/ч); от 0 до 2721,13 м³/ч (шкала от 0 до 18 т/ч); от 0 до 3000,00 м³/ч; от 0 до 7500,00 м³/ч; от 0 до 9290,40 м³/ч (шкала от 0 до 50 т/ч); от 0 до 11448,30 м³/ч (шкала от 0 до 63 т/ч)	см. примечание 4	8800 (от 4 до 20 мА)	(10000≤Re<20000); ±6 % (5000≤Re<10000); для газа и пара: ±1 % (Re≥15000); ±2 % (10000≤Re<15000); ±6 % (5000≤Re<10000) g ±0,025 % (погрешность преобразования в токовый выходной сигнал)	HiC2025	AAV144	g ±0,23 %
	от 0 до 645,17 м ³ /ч	CM.	Prowirl 72 F	1. При проливном методе поверки: d: ±1 % для газа и пара; d: ±0,75 % для жидкости;	HiC2025 или HiD2030 SK	AAI141 или AAI143	g ±0,15 %
	(шкала от 0 до 1 т/ч)	примечание 4	(от 4 до 20 мА)	 При беспроливном методе поверки: d: ±1% 	HiC2025	AAV144	g ±0,23 %

1	2	3	4	5	6	7	8
	от 0 до 160 л/ч; от 0 до 4,0 м ³ /ч; от 0 до 6,3 м ³ /ч; от 0 до 9,0 м ³ /ч; от 0 до 10,0 м ³ /ч;				НіС2025 или НіD2030 SK	ААІ141 или ААІ143	g ±0,15 %
ИК объемного расхода	от 0 до 28,16 м ³ /ч (шкала от 0 до 28 т/ч); от 0 до 29,58 м ³ /ч (шкала от 0 до 63 т/ч) от 0 до 50,0 м ³ /ч; от 0 до 50,49 м ³ /ч (шкала от 0 до 50 т/ч); от 0 до 50,99 м ³ /ч (шкала от 0 до 50 т/ч); от 0 до 90,17 м ³ /ч (шкала от 0 до 90 т/ч); от 0 до 315,0 м ³ /ч; от 0 до 800,0 м ³ /ч	см. примечание 4	ADMAG AXF (от 4 до 20 мА)	d: ±0,35 %	HiC2025	AAV144	g ±0,23 %
	от 0 до 50 м ³ /ч; от 0 до 120 м ³ /ч; от 0 до 225 м ³ /ч; от 0 до 250 м ³ /ч;	СМ.	Prosonic Flow 93P	d: ±0,5 %	НіС2025 или НіD2030 SK	ААІ141 или ААІ143	g ±0,15 %
	от 0 до 630 м ³ /ч; от 0 до 1250 м ³ /ч; от 0 до 2250 м ³ /ч	примечание 4	(от 4 до 20 мА)		HiC2025	AAV144	g ±0,23 %

1	2	3	4	5	6	7	8
	от 0 до 0,6 м ³ /ч; от 0 до 1,6 м ³ /ч; от 0 до 16,0 м ³ /ч; от 0 до 25,0 м ³ /ч; от 0 до 63,0 м ³ /ч; от 0 до 90,0 м ³ /ч;	CM.	UFM 500F-030 HT	1. При поверке проливным методом: d: ±0,5 % при скорости потока св. 0,5 до 20 м/с включ.; d: ±1 % при скорости потока св. 0,25 до 0,5 м/с включ.; d: ±2 % при скорости потока св. 0,125 до 0,25 м/с включ.; d: ±4 % при скорости потока от 0,0625 до 0,125 м/с включ.;	НiC2025 или HiD2030 SK	AAI141 или AAI143	g ±0,15 %
ИК объемного расхода	от 0 до 90,0 м /ч; от 0 до 100,0 м ³ /ч; от 0 до 160,0 м ³ /ч; от 0 до 315,0 м ³ /ч; от 0 до 400,0 м ³ /ч; от 0 до 450,0 м ³ /ч	примечание 4	(от 4 до 20 мА)	2. При поверке имитационным методом: d: ±1 % при скорости потока от св. 0,5 до 20 м/с включ.; d: ±2 % при скорости потока св. 0,25 до 0,5 м/с включ.; d: ±4 % при скорости потока св. 0,125 до 0,25 м/с включ.; d: ±8 % при скорости потока от 0,0625 до 0,125 м/с включ.	HiC2025	AAV144	g ±0,23 %
	от 0 до 4 м ³ /ч	см. примечание 4	RAMC (от 4 до 20 мА)	g ±(1,6·0,5Q _{max} /Q _{изм}), % при Q _{min} ≤Q _{изм} ≤0,5Q _{max} ; g ±1,6 % при	НiC2025 или HiD2030 SK	AAI141 или AAI143	g ±0,15 %
				$0.5Q_{max} < Q_{u_{3M}} \le Q_{max}$	HiC2025	AAV144	g ±0,23 %

1	2	3	4	5	6	7	8
	от 0 до 500 кг/ч; от 0 до 900 кг/ч; от 0 до 7,1 т/ч	см. примечание 4	СМF200/1700 (от 4 до 20 мА)	d: $\pm 0,35$ % для газа; d: $\pm 0,10$ % для жидкости	НiC2025 или HiD2030 SK HiC2025	ААІ141 или ААІ143 ААV144	g ±0,15 % g ±0,23 %
	от 0 до 16 т/ч	см. примечание 4	СМF200/2700 (от 4 до 20 мА)	d: ±0,35 % для газа; d: ±0,10 % для жидкости	НiC2025 или HiD2030 SK	AAI141 или AAI143	g ±0,15 %
ИК массового	от 0 до 2000 кг/ч; от 0 до 25 т/ч	см. примечание 4	СМF300/1700 (от 4 до 20 мА)	d: ±0,35 % для газа; d: ±0,10 % для жидкости	HiC2025 HiC2025 или HiD2030 SK HiC2025	AAV144 AAI141 или AAI143 AAV144	g ±0,23 % g ±0,15 % g ±0,23 %
расхода	от 0 до 50 т/ч; от 0 до 56 т/ч; от 0 до 80 т/ч; от 0 до 100 т/ч;	см. примечание 4	СМF300/2700 (от 4 до 20 мА)	d: ±0,35 % для газа; d: ±0,10 % для жидкости	HiC2025 или HiD2030 SK HiC2025	ААІ141 или ААІ143 ААV144	g ±0,23 % g ±0,23 %
	от 0 до 16 т/ч	см. примечание 4	СМF400/1700 (от 4 до 20 мА)	d: ±0,35 % для газа; d: ±0,10 % для жидкости	HiC2025 или HiD2030 SK HiC2025	ААІ141 или ААІ143 ААV144	g ±0,23 % g ±0,15 % g ±0,23 %
	от 0 до 180 т/ч; от 0 до 200 т/ч	см. примечание 4	СМF400/2700 (от 4 до 20 мА)	d: $\pm 0,35$ % для газа; d: $\pm 0,10$ % для жидкости	HiC2025 или HiD2030 SK HiC2025	ААІ141 или ААІ143 ААV144	g ±0,15 % g ±0,23 %

1	2	3	4	5	6	7	8
	от 0 до 250 мм; от 0 до 400 мм; от 0 до 600 мм; от 0 до 800 мм;	g ±0,58 %			НіС2025 или НіD2030 SK	AAI141 или AAI143	g ±0,15 %
ИК уровня	от 0 до 1000 мм; от 0 до 1600 мм; от 50 до 300 мм; от 50 до 450 мм; от 50 до 650 мм; от 50 до 1050 мм; от 50 до 1050 мм; от 50 до 1650 мм; от 100 до 350 мм; от 100 до 500 мм; от 100 до 700 мм; от 100 до 1100 мм; от 100 до 1700 мм; от 150 до 400 мм; от 150 до 400 мм; от 150 до 750 мм; от 150 до 950 мм; от 150 до 1150 мм;	g ±0,61 %	САПФИР- 22МП-ДУ (от 4 до 20 мА)	g ±0,5 %	HiC2025	AAV144	g ±0,23 %

1	2	3	4	5	6	7	8
	от 200 до 450 мм; от 200 до 600 мм; от 200 до 800 мм; от 200 до 1000 мм;	g ±0,58 %	САПФИР- 22МП-ДУ (от 4 до 20 мА)	g: ±0,5 %	НіС2025 или НіD2030 SK	AAI141 или AAI143	g ±0,15 %
	от 200 до 1200 мм; от 200 до 1800 мм	g: ±0,61 %	(01 + 40 20 M/1)		HiC2025	AAV144	g ±0,23 %
	от 0 до 30000 мм от 0 до 50000 мм ¹⁾	Δ: ±49,81 мм см. примечание 4	5601	Δ: ±5 мм	HiC2025 или HiD2030 SK	AAI141 или AAI143	g ±0,15 %
	от 0 до 30000 мм	Δ: ±76,10 мм	(от 4 до 20 мА)				
ИК уровня	от 0 до 50000 мм ¹⁾	см. примечание 4			HiC2025	AAV144	g ±0,23 %
ит уровня	от 0 до 20500 мм	 ∆: ±37,64 мм в диапазоне измерений от 150 до 400 мм включ.; ∆: ±33,99 мм в диапазоне измерений св. 400 до 20500 мм включ. 	5402 (от 4 до 20 мА)	Δ: ±15 мм (от 150 до 400 мм включ.); Δ: ±3 мм (св. 400 мм)	НiC2025 или HiD2030 SK	ААІ141 или ААІ143	g ±0,15 %
	от 0 до 30000 мм ¹⁾	см. примечание 4					

1	2	3	4	5	6	7	8
	от 0 до 20500 мм от 0 до 30000 мм ¹⁾	∆: ±54,43 мм в диапазоне измерений от 150 до 400 мм включ.; ∆: ±51,97 мм в диапазоне измерений св. 400 до 20500 мм включ. см. примечание 4	5402 (от 4 до 20 мА)	Δ: ±15 мм (от 150 до 400 мм включ.); Δ: ±3 мм (св. 400 мм)	HiC2025	AAV144	g ±0,23 %
ИК уровня	от 200 до 3650 мм (шкала от -3750 до -300 мм)	Δ: ±6,11 мм					
	от 200 до 2000 мм (шкала от -2100 до -300 мм)	Δ: ±3,70 мм			HiC2025	AAI141 или AAI143	
	от 200 до 2200 мм (шкала от 100 до 2100 мм)	Δ: ±3,97 мм	FMP51 (от 4 до 20 мА)	Δ: ±2 мм (до 15 м); Δ: ±3 мм (св. 15 м до	или HiD2030 SK		g ±0,15 %
	от 250 до 1800 мм	Δ : ±3,38 mm	(01 - до 20 мл)	45 м)			
	от 425 до 1025 мм	Δ: ±2,42 мм					
(от 585 до 3500 мм	Δ: ±5,29 мм					
	от 200 до 45000 мм ¹⁾	см. примечание 4					
	от 200 до 3650 мм (шкала от -3750 до -300 мм)	Δ: ±9,01 мм			HiC2025	AAV144	g ±0,23 %

1	2	3	4	5	6	7	8
	от 200 до 2000 мм (шкала от -2100 до -300 мм)	(шкала от -2100 до Δ : ±5,06 мм -300 мм)					
ИК уровня	от 200 до 2200 мм (шкала от 100 до 2100 мм)	Δ: ±5,52 мм	FMP51 (от 4 до 20 мА)	Δ: ±2 мм (до 15 м); Δ: ±3 мм (св. 15 м до	HiC2025	AAV144	g ±0,23 %
	от 250 до 1800 мм	Δ: ±4,50 мм		45 м)			
	от 425 до 1025 мм	Δ : $\pm 2,68$ mm					
	от 585 до 3500 мм	Δ : ±7,70 мм					
	от 200 до 45000 мм ¹⁾	см. примечание 4					

1	2	3	4	5	6	7	8
ИК уровня	от 50 до 3050 мм (шкала от -150 до 2850 мм); от 50 до 1300 мм (шкала от -82 до 1168 мм); от 50 до 1650 мм (шкала от -64 до 1536 мм); от 75 до 1255 мм; от 150 до 750 мм; от 150 до 950 мм; от 150 до 1950 мм; от 150 до 2950 мм; от 150 до 2950 мм; от 150 до 2950 мм; от 150 до 3150 мм; от 150 до 3150 мм; от 150 до 3150 мм; от 200 до 1000 мм; от 200 до 1000 мм; от 200 до 1800 мм; от 250 до 1550 мм; от 250 до 1550 мм; от 355 до 1025 мм; от 375 до 745 мм; от 455 до 1300 мм; от 650 до 1300 мм; от 650 до 1300 мм; от 650 до 1300 мм;	g ±0,28 %	244LD (от 4 до 20 мА)	g ±0,2 %	HiC2025 или HiD2030 SK	ААІ141 или ААІ143	g ±0,15 %

1	2	3	4	5	6	7	8
ИК уровня	от 50 до 3050 мм (шкала от -150 до 2850 мм); от 50 до 1300 мм (шкала от -82 до 1168 мм); от 50 до 1650 мм (шкала от -64 до 1536 мм); от 75 до 1255 мм; от 150 до 750 мм; от 150 до 950 мм; от 150 до 1950 мм; от 150 до 2950 мм; от 150 до 2950 мм; от 150 до 3150 мм; от 150 до 3150 мм; от 150 до 3150 мм; от 175 до 1330 мм; от 200 до 1000 мм; от 200 до 1000 мм; от 200 до 1800 мм; от 250 до 1550 мм; от 250 до 1700 мм; от 355 до 1025 мм; от 375 до 745 мм; от 455 до 1300 мм; от 650 до 1300 мм; от 650 до 1300 мм; от 650 до 1300 мм;	g ±0,34 %	244LD (от 4 до 20 мА)	g: ±0,2 %	HiC2025	AAV144	g ±0,23 %

Продолжение I	2	3	4	5	6	7	8
	от 100 до 4850 мм (шкала от -6200 до -1450 мм)	Δ: ±8,51 мм					
	от 100 до 3100 мм (шкала от -150 до 2850 мм)	Δ: ±5,95 мм					
О ИК уровня	от 100 до 1350 мм (шкала от -82 до 1168 мм)	Δ : ±3,40 мм	5301 (от 4 до 20 мА)				
	от 100 до 1700 мм (шкала от -64 до 1536 мм; шкала от 0 до 1600 мм)	Δ: ±4,23 мм		Δ: ±3 мм (от 0,1 до 10 м включ.); d: ±2 % (св. 10 м до 50 м)	H:C2025		
ИК уровня	от 100 до 1100 мм (шкала от 0 до 1000 мм)	Δ: ±3,69 мм			или HiD2030		g ±0,15 %
	от 100 до 1500 мм (шкала от 0 до 1400 мм)	Δ: ±4,03 мм) N		
	от 100 до 1000 мм (шкала от 50 до 950 мм)	Δ: ±3,62 мм					
	от 100 до 2600 мм (шкала от 70 до 2570 мм)	Δ : ±5,29 mm					
	от 100 до 1280 мм (шкала от 75 до 1255 мм)	Δ: ±3,84 мм					
	от 100 до 600 мм	Δ: ±3,51 мм	_				
	от 100 до 1000 мм	Δ : ±3,62 mm					

Продолжение 1 1	2	3	4	5	6	7	8
	от 100 до 1100 мм	Δ: ±3,69 мм					
	от 100 до 1900 мм	Δ: ±4,44 мм					
	от 100 до 2340 мм	Δ: ±4,96 мм					
	от 100 до 2600 мм	Δ: ±5,29 мм					
	от 150 до 950 мм	Δ: ±3,56 мм					
	от 150 до 1550 мм	Δ: ±4,03 мм					
	от 150 до 1950 мм	Δ: ±4,44 мм					
	от 150 до 2950 мм	Δ: ±5,68 мм					
	от 150 до 3150 мм	Δ: ±5,95 мм					
	от 150 до 5150 мм	Δ: ±8,89 мм					
	от 150 до 5750 мм	Δ: ±9,82 мм					
	от 175 до 1330 мм	Δ: ±3,82 мм					
	от 175 до 1675 мм	Δ: ±4,13 мм		включ.); d: ±0,03 % (св. 10 м до		AAI141 или	
	от 200 до 800 мм	Δ: ±3,45 мм	5201		HiC2025		
ИК уровня	от 200 до1000 мм	Δ: ±3,56 мм	5301		или		g ±0,15 %
J 1	от 200 до 1200 мм	Δ: ±3,69 мм	(от 4 до 20 мА)		HiD2030		g 23,55 75
	от 200 до1450 мм	Δ: ±3,90 мм		50 м)	SK		
	от 200 до 2200 мм	Δ: ±4,67 мм					
	от 200 до 4450 мм	Δ: ±7,76 мм					
	от 200 до5800 мм	Δ: ±9,82 мм					
	от 200 до 8200 мм	Δ: ±13,61 мм					
	от 250 до 700 мм	Δ: ±3,39 мм					
	от 250 до 1550 мм	Δ: ±3,94 мм					
	от 250 до 1700 мм	Δ: ±4,08 мм					
	от 250 до 3600 мм	Δ : ±6,44 mm					
	от 250 до 4650 мм	Δ : ±7,98 мм					
	от 250 до 4700 мм	Δ : ±8,05 mm					
	от 280 до 3430 мм	Δ : ±6,16 мм					
	от 300 до 2300 мм	Δ: ±4,67 мм					
	от 650 до 1300 мм	Δ : ±3,47 mm					

1	2	3	4	5	6	7	8
	от 100 до 50000 мм ¹⁾	см. примечание 4			HiC2025 или HiD2030 SK	ААІ141 или ААІ143	g ±0,15 %
	от 100 до 4850 мм (шкала от -6200 до -1450 мм)	Δ: ±12,47 мм	5301 (от 4 до 20 мА)				
	от 100 до 3100 мм (шкала от -150 до 2850 мм)	Δ : ±8,27 mm					
	от 100 до 1350 мм (шкала от -82 до 1168 мм)	Δ: ±4,58 мм		Δ: ±3 мм (от 0,1 до 10 м включ.); d: ±0,03 % (св. 10 м до 50 м)			
ИК уровня	от 100 до 1700 мм (шкала от -64 до 1536 мм; шкала от 0 до 1600 мм)	Δ: ±5,23 мм			HiC2025	AAV144	g ±0,23 %
	от 100 до 1100 мм (шкала от 0 до 1000 мм)	Δ: ±4,16 мм					
	от 100 до 1500 мм (шкала от 0 до 1400 мм)	Δ: ±4,85 мм					
	от 100 до 1000 мм (шкала от 50 до 950 мм)	Δ: ±4,01 мм					
	от 100 до 2600 мм (шкала от 70 до 2570 мм)	Δ : $\pm 7,14$ мм					

Продолжение п 1	2	3	4	5	6	7	8
_	от 100 до 1280 мм	-	-	-		-	
	(шкала от 75 до	Δ : ±4,46 mm					
	1255 мм)	·					
	от 100 до 600 мм	Δ: ±3,54 мм					
	от 100 до 1000 мм	Δ : ±4,01 mm					
	от 100 до 1100 мм	Δ : ±4,16 mm					
	от 100 до 1900 мм	Δ : ±5,63 mm					
	от 100 до 2340 мм	Δ : ±6,56 mm					
	от 100 до 2600 мм	Δ : $\pm 7,14$ mm					
	от 150 до 950 мм	Δ: ±3,88 мм					
	от 150 до 1550 мм	Δ: ±4,85 мм					
	от 150 до 1950 мм	$Δ: \pm 5,63$ mm					
	от 150 до 2950 мм	Δ : ±7,82 мм	5301			25 AAV144	
	от 150 до 3150 мм	$Δ: \pm 8,27 \text{ mm}$		Δ: ±3 мм (от 0,1 до 10 м включ.); d: ±0,03 % (св. 10 м до			
	от 150 до 5150 мм	$Δ: \pm 13,08 \text{ mm}$					
ИК уровня	от 150 до 5750 мм	Δ : ±14,55 mm	(от 4 до 20 мА)		HiC2025	25 AAV144	g ±0,23 %
	от 175 до 1330 мм	Δ: ±4,41 мм	(01 + <u>4</u> 0 20 M/1)	б. ±0,03 % (св. 10 м до 50 м)			
	от 175 до 1675 мм	Δ : ±5,03 mm		30 M)			
	от 200 до 800 мм	Δ: ±3,64 мм					
	от 200 до1000 мм	Δ: ±3,88 мм					
	от 200 до 1200 мм	Δ: ±4,16 мм					
	от 200 до1450 мм	Δ: ±4,58 mm					
	от 200 до 2200 мм	Δ : ±6,05 mm					
	от 200 до 4450 мм	Δ : ±11,25 mm					
	от 200 до5800 мм	Δ : ±14,55 mm					
	от 200 до 8200 мм	Δ : ±20,51 mm					
	от 250 до 700 мм	Δ : ±3,50 mm					
	от 250 до 1550 мм	Δ: ±4,66 mm					
	от 250 до 1700 мм	Δ: ±4,94 mm					
	от 250 до 3600 мм	$Δ: \pm 9,10 \text{ mm}$					
	от 250 до 4650 мм	$Δ: \pm 11,62 \text{ MM}$					

1	2	3	4	5	6	7	8
	от 250 до 4700 мм от 280 до 3430 мм от 300 до 2300 мм от 650 до 1300 мм от 100 до 50000 мм ¹⁾	Δ: ±11,74 мм Δ: ±8,63 мм Δ: ±6,05 мм Δ: ±3,69 мм см. примечание 4	5301 (от 4 до 20 мА)	Δ : ± 3 мм (от 0,1 до 10 м включ.); d: $\pm 0,03$ % (св. 10 м до 50 м)	HiC2025	AAV144	g ±0,23 %
О О О О О О О О О О О О О О О О О О О	от 100 до 5100 мм (шкала от 0 до 5000 мм) от 150 до 2150 мм от 150 до 3150 мм от 175 до 3525 мм от 250 до 3000 мм от 250 до 4400 мм от 100 до 50000 мм ¹⁾	Δ: ±8,89 mm Δ: ±4,67 mm Δ: ±5,95 mm Δ: ±6,44 mm Δ: ±5,62 mm Δ: ±7,61 mm см. примечание 4	5302	Δ : ± 3 мм (от 0,1 до 10 м включ.);	НіС2025 или НіD2030 SK	AAI141 или AAI143	g ±0,15 %
	от 100 до 5100 мм (шкала от 0 до 5000 мм) от 150 до 2150 мм от 150 до 3150 мм от 175 до 3525 мм от 250 до 3000 мм от 250 до 4400 мм от 100 до 50000 мм ¹⁾	Δ : ±13,08 мм Δ : ±6,05 мм Δ : ±8,28 мм Δ : ±9,10 мм Δ : ±7,71 мм Δ : ±11,01 мм Δ : тримечание 4	(от 4 до 20 мА)	d: ±0,03 % (св. 10 м до 50 м)	HiC2025	AAV144	g ±0,23 %
ИК компонентного состава	ИК от 0 до 5 % енентного объемной доли СО става (шкала от 0 до 10 %)		THERMOX (от 4 до 20 мА)	g ±2 %	НіС2025 или НіD2030 SK	AAI141 или AAI143	g ±0,15 %
		g: ±2,22 %			HiC2025	AAV144	g ±0,23 %

1	2	3	4	5	6	7	8
		Δ: ±5,51 % ΗΚΠΡ (от 0 до 50 % ΗΚΠΡ			НiC2025 или HiD2030 SK	AAI141 или AAI143	g ±0,15 %
ИК НКПР	от 0 ло 100 % НКПР	т 0 ло 100 % НКПР 100 % НКПР) Millennium II 50 % НКПР включ.);	Δ: ±5 % НКПР (от 0 до 50 % НКПР включ.);	-	TMITTS	g ±0,10 %	
ИК НКПР	от 0 до 100 % НКПР	Δ: ±5,51 % НКПР (от 0 до 50 % НКПР включ.); d: ±11,02 % (св. 50 до 100 % НКПР)	(от 4 до 20 мА)	d: ±10 % (св. 50 до 100 % НКПР)	HiC2025	AAV144	g ±0,23 %
ИК влагосодер- жания	от 5 до 95 % (шкала от 0 до 100 %)	Δ: ±3,31 % (св. 10 до 90 % включ.); Δ: ±4,41 % (от 5 до 10 % включ.; св. 90 до 95 %)	Ивит-М.Т (от 4 до 20 мА)	Δ: ±3 % (св. 10 до 90 % включ.); Δ: ±4 % (от 5 до 10 % включ.; св. 90 до 95 %)	-	AAI141 или AAI143	g ±0,15 %
ИК силы тока	от 4 до 20 мА	g ±0,15 % g ±0,10 %	-	-	HiC2025 или HiD2030 SK	AAI141 или AAI143	g ±0,15 %
		g: ±0,10 % g: ±0,23 %			HiC2025	AAV144	g ±0,10 % g ±0,23 %

	1	2		3		4			5			6	7	8	
	¹⁾ Указан	и максимальный	диапазон	измерений	(диапазо	он измерений	може	г быть	настроен	на	меньший	диапазон н	в соответствии с	эксплуатационной	
документацией на первичный ИП ИК).															

Примечания

1 HCX - номинальная статическая характеристика.

2 Приняты следующие обозначения:

 Δ - абсолютная погрешность, в единицах измеряемой величины;

d - относительная погрешность, %;

g - приведенная погрешность, %;

ДИ_{тах} - верхний предел диапазона измерений;

ДИ - настроенный диапазон измерений;

t - измеренная температура, °С;

t_n - настроенный диапазон измерений температуры, °С;

Q_{max} - полное значение шкалы, в единицах измерения расхода;

Q_{min} - нижний предел измерения, в единицах измерения расхода;

Q_{изм} - измеренное значение расхода, в единицах измерения расхода;

Re - число Рейнольдса;

D - диаметр условного прохода, мм.

3 Шкала ИК, применяемых для измерения перепада давления на сужающем устройстве и уровня, установлена в ИС в единицах измерения расхода и уровня соответственно. Пределы допускаемой основной погрешности данных ИК нормированы по диапазону измерений перепада давления.

4 Пределы допускаемой основной погрешности ИК рассчитывают по формулам:

- абсолютная D_{uv} , в единицах измеряемой величины:

где D_{m} - пределы допускаемой основной абсолютной погрешности первичного ИП ИК, в единицах измерений измеряемой величины;

дып - пределы допускаемой основной приведенной погрешности вторичной части ИК, %;

х_{пах} - значение измеряемого параметра, соответствующее максимальному значению диапазона аналогового сигнала, в единицах измеряемой величины;

х_{тып} - значение измеряемого параметра, соответствующее минимальному значению границы диапазона аналогового сигнала, в единицах измерений измеряемой величины;

D_{вп} - пределы допускаемой основной абсолютной погрешности вторичной части ИК, в единицах измерений измеряемой величины;

1	2	3	4	5	6	7	8

- относительная _{d_{ик}}, %:

$$\mathbf{d}_{\mathrm{MK}} = \pm 1.1 \times \sqrt{\mathbf{d}_{\mathrm{\Pi\Pi}}^{2} + \mathop{\mathbf{e}}_{\mathop{\boldsymbol{c}}}^{\mathbf{g}} \mathbf{g}_{\mathrm{BH}} \times \frac{X_{\mathrm{max}} - X_{\mathrm{min}}}{X_{\mathrm{\tiny H3M}}} \mathop{\dot{\boldsymbol{o}}^{2}}_{\mathop{\boldsymbol{\phi}}}^{2}},$$

где d_{пп} - пределы допускаемой основной относительной погрешности первичного ИП ИК, %;

- приведенная _{дик} , %:

$$g_{\text{MK}} = \pm 1.1 \times \sqrt{g_{\Pi\Pi}^2 + g_{B\Pi}^2},$$

где $\mathbf{g}_{_{\mathrm{III}}}$ - пределы допускаемой основной приведенной погрешности первичного ИП ИК, %.

- 5 Для расчета погрешности ИК в условиях эксплуатации:
- приводят форму представления основных и дополнительных погрешностей измерительных компонентов ИК к единому виду (приведенная, относительная, абсолютная);
- для каждого измерительного компонента ИК рассчитывают пределы допускаемых значений погрешности в условиях эксплуатации путем учета основной и дополнительных погрешностей от влияющих факторов.

Пределы допускаемых значений погрешности измерительного компонента ИК в условиях эксплуатации рассчитывают по формуле

$$\label{eq:DCH} {\sf D}_{CH} = \pm \sqrt{{\sf D}_0^2 + \mathop{{\sf a}}\limits_{i=0}^n \, {\sf D}_i^2} \ ,$$

где D_0 - пределы допускаемой основной погрешности измерительного компонента;

D_i - погрешности измерительного компонента от *i*-го влияющего фактора в условиях эксплуатации при общем числе *n* учитываемых влияющих факторов.

Для каждого ИК рассчитывают границы, в которых с вероятностью равной 0,95 должна находиться его погрешность в условиях эксплуатации, по формуле

$$D_{MK} = \pm 1.1 \times \sqrt{\sum_{j=0}^{k} (D_{CU_j})^2}$$
,

где $D_{\text{CИ}_{i}}$ - пределы допускаемых значений погрешности $D_{\text{CИ}}$ *j*-го измерительного компонента ИК в условиях эксплуатации.

Знак утверждения типа

наносится на титульный лист паспорта типографским способом.

Комплектность средства измерений

Комплектность ИС представлена в таблице 6.

Таблица 6 - Комплектность ИС

Наименование	Обозначение	Количество	
Система измерительная установки 21-20			
ООО «ЛУКОЙЛ-Пермнефтеоргсинтез»,	-	1 шт.	
заводской № 705413			
Руководство по эксплуатации	-	1 экз.	
Паспорт	-	1 экз.	
Методика поверки	МП 3011/1-311229-	1 экз.	
Методика поверки	2017		

Поверка

осуществляется по документу МП 3011/1-311229-2017 «Государственная система обеспечения единства измерений. Система измерительная установки 21-20 ООО «ЛУКОЙЛ-Пермнефтеоргсинтез». Методика поверки», утвержденному ООО Центр Метрологии «СТП» 30 ноября 2017 г.

Основные средства поверки:

- средства поверки в соответствии с документами на поверку средств измерений, входящих в состав ИС;
 - калибратор многофункциональный MC5-R-IS (регистрационный номер 22237-08).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

Знак поверки наносится на свидетельство о поверке ИС.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные документы, устанавливающие требования к системе измерительной установки 21-20 OOO «ЛУКОЙЛ-Пермнефтеоргсинтез»

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «ЛУКОЙЛ-Пермнефтеоргсинтез» (ООО «ЛУКОЙЛ-Пермнефтеоргсинтез»)

ИНН 5905099475

Адрес: 614055, г. Пермь, ул. Промышленная, 84 Телефон: (342) 2202467, факс: (342) 2202288

Web-сайт: http://pnos.lukoil.ru/ru E-mail: lukoil.com

Испытательный центр

Общество с ограниченной ответственностью Центр Метрологии «СТП»

Адрес: 420107, Республика Татарстан, г. Казань, ул. Петербургская, д. 50, корп. 5, офис 7

Телефон: (843) 214-20-98, факс: (843) 227-40-10

Web-сайт: http://www.ooostp.ru

E-mail: office@ooostp.ru

Аттестат аккредитации ООО Центр Метрологии «СТП» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311229 от 30.07.2015 г.

Заместитель	
Руководителя Федерального	
агентства по техническому	
регулированию и метрологии	

М.п. «___»____2018 г.