0daH 343.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

Федеральное государственное унитарное предприятие

«Всероссийский научно-исследовательский институт расходометрии»

Государственный научный метрологический центр

ФГУП «ВНИИР»

УТВЕРЖДАЮ

Заместитель директора по развитию ФГУП «ВНИИР»

А.С. Тайбинский

31» октября 2017 г.

Государственная система обеспечения единства измерений СИСТЕМА ИЗМЕРЕНИЙ КОЛИЧЕСТВА И ПОКАЗАТЕЛЕЙ КАЧЕСТВА НЕФТЕПРОДУКТОВ № 708

Методика поверки

MΠ 0664-14-2017

Начальник НИО-14

Р.Н. Груздев

Тел. (843) 299-70-52

Казань 2017 1 РАЗРАБОТАНА

ФГУП «ВНИИР»

ИСПОЛНИТЕЛИ

Фаткуллин А.М.

2 УТВЕРЖДЕНА

ФГУП «ВНИИР»

3 ВВЕДЕНА

ВПЕРВЫЕ

Настоящий документ не может быть полностью или частично воспроизведен, тиражирован и (или) распространен без разрешения ФГУП «ВНИИР».

Настоящая методика поверки предназначена для осуществления поверки средства измерений единичного производства «Система измерений количества и показателей качества нефтепродуктов № 708» (далее — система) и устанавливает методику её первичной и периодической поверок.

Первичная поверка системы выполняется согласно части 1 ст. 13 Федерального закона «Об обеспечении единства измерений» от 26 июня 2008 г. № 102-ФЗ и приказа Минпромторга России от 2 июля 2015 г. №1815 до ввода её в эксплуатацию, а также после её ремонта.

Периодическая поверка системы выполняется в процессе её эксплуатации.

Методика поверки разработана в соответствии с требованиями РМГ 51-2002 «ГСИ. Документы на методики поверки средств измерений. Основные положения».

Интервал между поверками – 12 месяцев.

1 Операции поверки

- 1.1 При проведении поверки системы выполняют операции поверки:
- внешний осмотр (6.1);
- подтверждение соответствия программного обеспечения (6.2);
- опробование (6.3);
- определение (контроль) метрологических характеристик (6.4);
- контроль относительной погрешности измерений массы нефтепродуктов (6.4.1).
- 1.2 Поверку системы прекращают при получении отрицательных результатов при проведении той или иной операции.

2 Средства поверки

2.1 Рабочий эталон 1-го разряда по ГОСТ 8.510–2002 «ГСИ. Государственная поверочная схема для средств измерений объема и массы жидкости».

Установки поверочные СР, СР-М модификация установка поверочная СР, регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений (далее — регистрационный номер) 27778-15, диапазон расхода измеряемой среды от 3,972 до 3972 м³/ч, пределы допускаемой относительной погрешности ±0,05 % (далее — ТПУ).

- 2.2 Рабочий эталон 1-го разряда по ГОСТ 8.024-2002 «ГСИ. Государственная поверочная схема для средств измерений плотности», диапазон измерения от 700 до 1700 кг/м³, пределы допускаемой абсолютной погрешности ±0,10 кг/м³.
- 2.3 Другие эталоны, средства поверки, приведенные в методиках поверки средств измерений, входящих в состав системы.
- 2.4 Допускается применение эталонов, средств поверки, не приведенных в перечне, но обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

3 Требования безопасности

При проведении поверки соблюдают требования, определяемые нормативными, правовыми документами:

- «Правила безопасности в нефтяной и газовой промышленности» (приказ Ростехнадзора от 12.03.2013 № 101), «Рекомендации по устройству и безопасной эксплуатации технологических трубопроводов» (приказ Федеральной службы по экологическому, технологическому и атомному надзору от 27.12.2012 г. № 784), а также другие действующие отраслевые нормативные документы;
- правила безопасности при эксплуатации используемых средств измерений, приведенные в их эксплуатационной документации;
- «Правила по охране труда при эксплуатации электроустановок», утвержденные приказом Минтруда России от 24 июля 2013 г. № 328н;
 - «Правила устройства электроустановок (ПУЭ) потребителей».

4 Условия поверки

При проведении поверки системы характеристики системы, измеряемой среды должны соответствовать требованиям, приведенным в таблице 1.

Таблица 1

Наименование характеристики	Значение	
Диапазон динамических измерений массы	от 427 до 3150	
нефтепродукта, т/ч (м³/ч)	(от 600 до 3600)	
Пределы допускаемой относительной погрешности		
измерений массы нефтепродукта, %	±0,25	
Количество измерительных линий, шт.	3 (две рабочие, одна контрольно-	
	резервная)	
Избыточное давление, МПа:		
- рабочее	1,4	
- минимальное	0,4	
- максимальное	1,6	
Измеряемая среда	топливо дизельное по ГОСТ Р 52368 (ЕН 590:2004) ¹⁾ , ГОСТ 32511 (ЕН 590:2009) ²⁾ , ГОСТ 305 ³⁾ , бензины прямогонные	
	по ТУ или СТО	
	заводов-изготовителей, прочие легкие и средние дистилляты	
Температура измеряемой среды, °С	от 0 до +35	
Плотность измеряемой среды при температуре 15°C и избыточном давлении равном нулю, кг/м ³	от 700,0 до 863,4	
Вязкость кинематическая измеряемой среды при температуре 20°C, мм²/с	от 0,2 до 6,0	
Содержание свободного газа	не допускается	

Окончание таблицы 1

Наименование характеристики	Значение	
Параметры электрического питания:		
- напряжение переменного тока трехфазное, В	380 ± 38	
- напряжение переменного тока однофазное, В	220 ± 22	
- частота переменного тока, Гц	50 ± 1	
Условия эксплуатации:		
- температура наружного воздуха, °С	от -24 до +41	
- температура воздуха в помещениях, где установлено		
оборудование, °С	от +10 до +35	
- относительная влажность воздуха в помещениях, где		
установлено оборудование, %	от 30 до 80	
- атмосферное давление, кПа	от 84 до 106	
Средний срок службы, год, не менее	10	
Примонания		

Примечания:

5 Подготовка к поверке

Подготовку эталонов, средств поверки и системы осуществляют в соответствии с их эксплуатационной документацией.

6 Проведение поверки

6.1 Внешний осмотр

- 6.1.1 При внешнем осмотре проверяют комплектность и внешний вид.
- 6.1.1.1 Комплектность системы должна соответствовать её описанию типа.
- 6.1.1.2 При проверке внешнего вида должны выполняться требования:
- на компонентах системы не должно быть механических повреждений и дефектов, препятствующих её применению и проведению поверки;
- надписи и обозначения на компонентах системы должны быть четкими и читаемыми без применения технических средств, соответствовать технической документации;
- средства измерений, входящие в состав системы, должны быть поверены и иметь свидетельства о поверке и (или) записи в паспорте (формуляре) средств измерений, заверяемых подписью поверителя и знаком поверки и (или) пломбы, несущие на себе знак поверки, в соответствии с их методикой поверки и (или) МИ 3002—2006 «Рекомендация. ГСИ. Правила пломбирования и клеймения средств измерений и оборудования, применяемых в составе систем измерений количества и показателей качества нефти и поверочных установок».

Средства измерений, входящие в состав системы, поверяют в соответствии с методиками поверки, приведенными в приложении А.

6.1.2 Система, не прошедшая внешний осмотр, к поверке не допускается.

6.2 Подтверждение соответствия программного обеспечения

6.2.1 Для подтверждения соответствия программного обеспечения системы

¹⁾ ГОСТ Р 52368-2005 (ЕН 590:2004) «Топливо дизельное ЕВРО. Технические условия».

²⁾ ГОСТ 32511-2013 (EH 590:2009) «Топливо дизельное ЕВРО. Технические условия».

³⁾ ГОСТ 305-2013 «Топливо дизельное. Технические условия».

осуществляют проверку идентификационных данных программного обеспечения системы сведениям, приведенным в описании типа на систему.

- 6.2.2 Определение идентификационных данных метрологически значимой части программного обеспечения осуществляют в соответствии с руководством пользователя на программное обеспечение системы.
- 6.2.3 Идентификационные данные программного обеспечения системы должны соответствовать сведениям, приведенным в описание типа на систему.

6.3 Опробование

6.3.1 Опробуют систему путем увеличения или уменьшения скорости потока (расхода) нефтепродукта в пределах рабочего диапазона измерений.

Результаты опробования считают удовлетворительными, если при увеличении или уменьшении скорости потока (расхода) нефтепродукта соответствующим образом изменялись показания на мониторе компьютера автоматизированного рабочего места оператора системы и на дисплее контроллера.

6.3.2 Проверяют герметичность гидравлической схемы системы.

Проверку герметичности системы проводят согласно эксплуатационной документации на систему.

Система считается выдержавшим проверку, если на элементах и компонентах системы нет протечек нефтепродукта или снижения давления в системе.

6.4 Определение (контроль) метрологических характеристик

6.4.1 Контроль относительной погрешности измерений массы нефтепродуктов

6.4.1.1 Определение относительной погрешности системы при измерениях массы нефтепродукта осуществляют в соответствии с ГОСТ Р 8.595–2004 «ГСИ. Масса нефти и нефтепродуктов. Общие требования к методикам выполнения измерений».

По ГОСТ Р 8.595 (5.8.3) при косвенном методе динамических измерений пределы допускаемой относительной погрешности измерений массы нефтепродукта δ_m , %, вычисляют по формуле

$$\delta_{m} = \pm 1, 1 \cdot \sqrt{\delta V^{2} + G^{2} \cdot (\delta \rho^{2} + \beta^{2} \cdot 10^{4} \cdot \Delta T_{\rho}^{2}) + \beta^{2} \cdot 10^{4} \cdot \Delta T_{\nu}^{2} + \delta N^{2}} \ , \tag{1}$$

где δV - относительная погрешность измерений объема нефтепродукта, %:

δρ - относительная погрешность измерений плотности нефтепродукта,%;

 ΔT_{p} , - абсолютные погрешности измерений температуры нефтепродукта ΔT_{v} при измерениях его плотности и объема соответственно, °C;

 κοэффициент объемного расширения нефтепродукта, определяют по ГОСТ Р 8.595 (Приложение A), 1/°C;

δΝ - предел допускаемой относительной погрешности устройства

обработки информации или контроллера (из свидетельства об утверждении типа или свидетельства о поверке), %;

G - коэффициент, вычисляемый по формуле

$$G = \frac{1 + 2 \cdot \beta \cdot T_{v}}{1 + 2 \cdot \beta \cdot T_{o}}, \qquad (2)$$

где T_v , T_p - температура нефтепродукта при измерениях его объема и плотности соответственно, °C.

Относительную погрешность измерений плотности нефтепродукта $\delta \rho$, %, вычисляют по формуле

$$\delta \rho = \frac{\Delta_{\rho}}{\rho_{\text{MMH}}} \cdot 100 \,, \tag{3}$$

где $\Delta \rho$ - абсолютная погрешность измерений плотности нефтепродукта, кг/м³;

о_{мин} - минимальное значение плотности нефтепродукта в системе, кг/м³.

6.4.1.2 Результат вычислений по формуле (1) выражают двумя значащими цифрами в соответствии с СТ СЭВ 543-77 «Числа. Правила записи и округления». Сохраняемую значащую цифру в относительной погрешности измерений массы нефтепродукта при округлении увеличивают на единицу, если отбрасываемая цифра не указываемого младшего разряда больше либо равна пяти, и не изменяют, если она меньше пяти в соответствии с ГОСТ Р 8.736-2011 «ГСИ. Измерения прямые многократные. Методы обработки результатов измерений. Основные положения».

Структура образования относительной погрешности измерении массы нефтепродукта по формуле (1) при предельных значениях параметров нефтепродуктов в системе приведен в приложении Б.

6.4.1.3 Результат поверки признают положительным, если значение относительной погрешности измерений массы нефтепродукта системой не превышает ± 0.25 %.

7 Оформление результатов поверки

- 7.1 Положительные результаты поверки удостоверяются свидетельством о поверке и (или) записью в паспорте (формуляре), заверяемой подписью поверителя и знаком поверки.
- 7.2 Особенности конструкции системы не позволяют нанести знак поверки непосредственно на систему. Знак поверки наносится на свидетельство о поверке или на паспорт (формуляр) системы.
- 7.3 При отрицательных результатах поверки систему к эксплуатации не допускают, свидетельство о поверке аннулируют, гасят знак поверки и выдают извещение о непригодности с указанием причин.

Приложение А (рекомендуемое) Поверка средств измерений, входящих в состав системы

А.1 Поверку средств измерений, входящих в состав системы и предназначенных для измерений нескольких величин или имеющих несколько поддиапазонов измерений, но используемых для измерений меньшего числа величин или на меньшем числе поддиапазонов, или в более узком диапазоне измерений, допускается проводить на основании письменного заявления владельца системы, оформленного в произвольной форме.

- А.2 На месте эксплуатации системы осуществляют поверку средств измерений:
- преобразователи расхода турбинные HTM12 (далее ПР);
- преобразователи плотности жидкости измерительные моделей 7835, 7845, 7847 модификации 7835 (далее ПП).
- А.3 Поверку ПР осуществляют на месте эксплуатации системы по документу МИ 3380-12 «ГСИ. Преобразователи объемного расхода. Методика поверки на месте эксплуатации поверочной установкой».
- А.4 Поверку ПП осуществляют на месте эксплуатации системы по документу МИ 2816-2012 «Рекомендация. Государственная система обеспечения единства измерений. Преобразователи плотности поточные. Методика поверки на месте эксплуатации».
- А.5 Поверку других средств измерений, входящих в состав системы, осуществляют по документам, приведенным в их описании типа.

Приложение Б (справочное)

Структура образования относительной погрешности измерений массы нефтепродукта

Б.1 Структура образования относительной погрешности измерений массы нефтепродукта по формуле (1) при предельных значениях параметров нефтепродукта в системе приведена в таблице Б.1.

Таблица Б.1

Наименование показателя	Значение
Относительная погрешность измерений объема, δν, %	0,15
Абсолютная погрешность измерений температуры нефтепродукта при измерении плотности, ΔТρ, °C	
Температура нефтепродукта при измерении плотности, Тр, °C	0,0
Абсолютная погрешность измерений температуры нефтепродукта при измерении объёма, ΔTv, °C	0,2
Температура нефтепродукта при измерении объёма, Tv, °C	35,0
Абсолютная погрешность измерений плотности, Δρ, кг/м³	0,30
Нижний предел измерений плотности, $ ho_{\scriptscriptstyle{MuH}}$, кг/м³	
Относительная погрешность измерений плотности, δρ, %	0,04
Коэффициент объемного расширения нефтепрдукта, 1/ °C	0,00126
Коэффициент G	1,10471
Предел допускаемой относительной погрешности устройства обработки информации, δN, %	
Относительная погрешность измерений массы, бт, %	0,18

Б.2 Относительная погрешность измерений массы нефтепродукта не превышает ±0,25 %.