ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система измерительная дожимной компрессорной станции ДКС ООО «ЛУКОЙЛ-Пермнефтеоргсинтез»

Назначение средства измерений

Система измерительная дожимной компрессорной станции ДКС ООО «ЛУКОЙЛ-Пермнефтеоргсинтез» (далее - ИС) предназначена для измерений параметров технологического процесса (давления, перепада давления, объемного расхода, массового расхода, температуры, уровня, нижнего концентрационного предела распространения), формирования сигналов управления и регулирования.

Описание средства измерений

Принцип действия ИС основан на непрерывном измерении, преобразовании и обработке при помощи комплексов измерительно-вычислительных СЕNTUM (далее - CENTUM) и комплексов измерительно-вычислительных и управляющих противоаварийной защиты и технологической безопасности ProSafe-RS (далее - ProSafe-RS) входных сигналов, поступающих по измерительным каналам (далее - ИК) от первичных и промежуточных измерительных преобразователей (далее - ИП).

Сбор информации о состоянии технологического процесса и управляющие воздействия осуществляются посредством сигналов, поступающих и воспроизводимых по соответствующим ИК.

ИС осуществляет измерение параметров технологического процесса следующим образом:

- первичные ИП преобразуют текущие значения параметров технологического процесса в аналоговые унифицированные электрические сигналы силы постоянного тока
 - (от 4 до 20 мА), сигналы термопреобразователей сопротивления по ГОСТ 6651-2009;
- аналоговые унифицированные электрические сигналы силы постоянного тока (от 4 до 20 мА) от первичных ИП поступают на входы преобразователей измерительных тока и напряжения с гальванической развязкой (барьеры искрозащиты) серии К модули KFD2-STC4-Ex1 или KFD2-STC4-Ex2 (далее KFD2-STC4);
- сигналы термопреобразователей сопротивления по ГОСТ 6651-2009 поступают на входы преобразователей измерительных для термопар и термопреобразователей сопротивления с гальванической развязкой (барьеры искрозащиты) серии К модели KFD2-UT2-Ex1 или KFD2-UT2-Ex2 (далее KFD2-UT2);
- аналоговые унифицированные электрические сигналы силы постоянного тока (от 4 до 20 мА) от первичных ИП, KFD2-STC4 и KFD2-UT2 поступают на входы модулей AAI141 или AAI143 CENTUM (далее AAI) и модулей SAI143 Prosafe-RS (далее SAI).

Цифровые коды, преобразованные посредством AAI и SAI в значения физических параметров технологического процесса, и данные с интерфейсных входов представляются на мнемосхемах мониторов операторских станций управления в виде числовых значений, гистограмм, трендов, текстов, рисунков и цветовой окраски элементов мнемосхем, а также интегрируются в базу данных ИС.

Для выдачи управляющих воздействий используются модули AAI543 CENTUM (далее - AAI543) с преобразователями измерительными тока и напряжения с гальванической развязкой (барьеры искрозащиты) серии К модули KFD2-SCD2-Ex*.LK (далее - KFD2-SCD2).

Состав ИК ИС указан в таблице 1.

Таблица 1 - Состав ИК ИС

Таблица 1 - Сост	-	Состав ИК	
Havyvayva			ичный ИП
Наимено- вание ИК	Первичный ИП	Промежуточный ИП (барьер искрозащиты)	Модули ввода/вывода сигналов и обработки данных
ИК давления	Преобразователь давления измерительный 3051 модификации 3051TG (далее - 3051TG) (регистрационный номер 14061-10) Преобразователь давления измерительный ЕЈХ модели ЕЈХ 530 (далее - ЕЈХ 530) (регистрационный номер 28456-09)		
ИК перепада давления	Преобразователь давления измерительный 3051 модификации 3051CD (далее - 3051CD) (регистрационный номер 14061-10) Преобразователь давления измерительный ЕЈХ модели ЕЈХ 110 (далее - ЕЈХ 110) (регистрационный номер 28456-09)	KFD2-STC4 (регистрационный	ААІ (регистрационный номер 21532-08) или
ИК уровня	Уровнемер микроимпульсный Levelflex FMP5* (далее - Levelflex) (регистрационный номер 47249-11)	номер 22153-14)	SAI (регистрационный номер 31026-06)
ИК объемного расхода	Расходомер электромагнитный 8705 (далее - Rosemount 8705) (регистрационный номер 14660-08) Расходомер-счетчик вихревой 8800 (далее - Rosemount 8800) (регистрационный номер 14663-12) Расходомер-счетчик тепловой t-mass (далее - t-mass) (регистрационный номер 35688-13)		

продолжение та	олицы т Г	C IIII		
		Состав ИК	V 1111	
Наимено- вание ИК	Первичный ИП	Вторь Промежуточный ИП (барьер искрозащиты)	ичный ИП Модули ввода/вывода сигналов и обработки данных	
ИК объемного расхода	Счетчик газа ультразвуковой FLOWSIC 600 (далее - FLOWSIC 600) (регистрационный номер 36876-08) Счетчик газа ультразвуковой USZ 08 (далее - USZ 08) (регистрационный номер 51422-12) Расходомер ProBar (мод.	KFD2-STC4 (регистрационный		
	Probar 3051SFA) (далее - ProBar) (регистрационный номер 20102-04)	номер 22153-14)		
ИК массового расхода	Счетчик-расходомер массовый Місго Motion (далее - Місго Motion) (регистрационный номер 45115-10) t-mass		AAI (регистрационный номер 21532-08) или SAI (регистрационный	
	(регистрационный номер 35688-13)		номер 31026-06)	
ИК нижнего концентрационного предела распространения	Газоанализатор Millenium II (далее - Millenium II) (регистрационный номер 40635-09)	-		
ИК температуры	Термопреобразователь сопротивления платиновый серии ТК (далее - ТК) (регистрационный номер 26239-06) Термопреобразователь сопротивления платиновый серии ТК, ТЅТ (далее - ТС ТК) (регистрационный номер 49519-12)	KFD2-UT2 (регистрационный номер 22149-14)		

		Состав ИК			
Наимено- вание ИК		Вторичный ИП			
	Первичный ИП	Промежуточный	Модули ввода/вывода		
Balline FIIC	первичный ипт	ИП (барьер	сигналов и обработки		
		искрозащиты)	данных		
ИК температуры	ТК (регистрационный номер 26239-06) с преобразователем измерительным iTEMP модели ТМТ82 (далее - ТМТ82) (регистрационный номер 50138-12) ТС ТК (регистрационный номер 49519-12) с ТМТ82 (регистрационный номер 50138-12)	KFD2-STC4 (регистрационный номер 22153-14)	ААІ (регистрационный номер 21532-08) или SАІ (регистрационный номер 31026-06)		
ИК силы тока	-	- KFD2-STC4 (регистрационный номер 22153-14)			
ИК воспроизве- дения силы тока	-	KFD2-SCD2 (регистрационный номер 22153-14)	AAI543 (регистрационный номер 21532-08)		

ИС выполняет следующие функции:

- автоматизированное измерение, регистрация, обработка, контроль, хранение и индикация параметров технологического процесса;
- предупредительная и аварийная сигнализация при выходе параметров технологического процесса за установленные границы и при обнаружении неисправности в работе оборудования;
 - управление технологическим процессом в реальном масштабе времени;
 - противоаварийная защита оборудования установки;
- отображение технологической и системной информации на операторской станции управления;
 - накопление, регистрация и хранение поступающей информации;
 - самодиагностика;
 - автоматическое составление отчетов и рабочих (режимных) листов;
- защита системной информации от несанкционированного доступа программным средствам и изменения установленных параметров.

Программное обеспечение

Программное обеспечение (далее - ПО) ИС обеспечивает реализацию функций ИС.

Защита ПО ИС от непреднамеренных и преднамеренных изменений и обеспечение его соответствия утвержденному типу осуществляется путем идентификации, защиты от несанкционированного доступа.

Идентификационные данные ПО ИС приведены в таблице 2.

Таблица 2 - Идентификационные данные ПО ИС

Идоплуфиканиоми то данни то (прионоки)	Значе	ение
Идентификационные данные (признаки)	CENTUM	ProSafe-RS
Идентификационное наименование ПО	CENTUM VP	ProSafe-RS
		Workbench
Номер версии (идентификационный номер) ПО, не ниже	R5.03.00	R3.02.10
Цифровой идентификатор ПО	-	-

ПО ИС защищено от несанкционированного доступа, изменения алгоритмов и установленных параметров путем введения логина и пароля, ведения доступного только для чтения журнала событий.

Уровень защиты ПО ИС «средний» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Таблица 3 - Основные технические характеристики ИС

Наименование характеристики	Значение
Количество входных ИК, не более	600
Количество выходных ИК, не более	200
Условия эксплуатации:	
а) температура окружающей среды, °С:	
 в местах установки первичных ИП (в обогреваемом шкафу) 	от +5 до +40
– в местах установки первичных ИП (в открытом пространстве)	от -40 до +50
 в местах установки промежуточных ИП и модулей 	
ввода/вывода сигналов и обработки данных	от +15 до +25
б) относительная влажность, %	от 30 до 80,
	без конденсации влаги
в) атмосферное давление, кПа	от 84,0 до 106,7
Параметры электрического питания:	
 напряжение переменного тока, В 	220^{+22}_{-33}
– частота переменного тока, Гц	50±1
Потребляемая мощность, кВ·А, не более	15
Габаритные размеры отдельных шкафов, мм, не более:	
– длина	1000
– ширина	1200
– высота	2500
Масса отдельных шкафов, кг, не более	400
T	

Примечание - ИП, эксплуатация которых в указанных диапазонах температуры окружающей среды и относительной влажности не допускается, эксплуатируются при температуре окружающей среды и относительной влажности, указанных в технической документации на данные ИП.

Таблица 4 - Метрологические характеристики ИК ИС

	•	арактеристики ИК ИС	M	етрологические характери	стики измерител	ьных компонен	нтов ИК
Метр	Метрологические характеристики ИК		Первичный ИП		Вторичный ИП		
Наиме-	Диапазон измерений	Пределы допус- каемой основной погрешности	Тип (выходной сигнал)	Пределы допускаемой основной погрешности	Тип барьера искрозащиты	Тип модуля ввода/ вывода	Пределы допус- каемой основной погрешности*
1	2	3	4	5	6	7	8
ИК давления	от 0 до 0,16 МПа; от 0 до 0,4 МПа; от 0 до 0,6 МПа; от 0 до 1,6 МПа; от 0 до 1,6 МПа; от 0 до 2,5 МПа; от 0 до 10 МПа	γ: ±0,21 %	3051TG (or 4 до	γ : при $\frac{P_{\text{max}}}{P_{\text{B}}} \le 10 \pm 0,065 \%;$ при $\frac{P_{\text{max}}}{P_{\text{B}}} > 10$ $\pm \left(0,0075 \cdot \frac{P_{\text{max}}}{P_{\text{B}}}\right) \%$	KFD2-STC4	AAI или SAI	γ: ±0,17 %
давления	от 0 до 206 кПа**; от 0 до 1034 кПа**; от 0 до 5515 кПа**; от 0 до 27579 кПа**	см. примечание 3	20 мА)	$\pm \left(0,0075 \cdot \frac{P_{\text{max}}}{P_{\text{B}}}\right) \%$			
	от 0 до 68947 кПа**	см. примечание 3		γ : при $\frac{P_{\text{max}}}{P_{\text{B}}} \le 10$ $\pm 0.075 \%$			

1	2	3	4	5	6	7	8			
ИК давления	от 0 до 10 МПа; от -0,1 до 2,0 МПа**; от -0,1 до 10,0 МПа**; от -0,1 до 50,0 МПа	ү: от ±0,22 до ±0,54 %	EJX 530 (от 4 до 20 мА)	γ: от ±0,10 до ±0,46 %						
	от 0 до 0,16 кПа	γ: ±0,32 %		γ : при $\dfrac{P_{\text{max}}}{P_{_{\text{B}}}} \leq 2$						
ИК	от 0 до 0,745 кПа ^{**}	см. примечание 3	3051CD	$\begin{aligned} &\text{при } \frac{P_{\text{max}}}{P_{\text{B}}} \leq 2 \\ &\pm 0,1 \%; \\ &\text{при } \\ &2 < \frac{P_{\text{max}}}{P_{\text{B}}} \leq 30 \\ &\pm \left(0,05 \cdot \frac{P_{\text{max}}}{P_{\text{B}}}\right) \% \end{aligned}$	KFD2-STC4	AAI или SAI	γ: ±0,17 %			
перепада давления	от 0 до 3,56 кПа	γ: ±0,22 %	от 4 до 20 мА)				γ : при $\frac{P_{\text{max}}}{P_{_{\text{B}}}} \le 15$			
	от 0 до 6,2 кПа ^{**}	см. примечание 3								

1	2	3	4	5	6	7	8
ИК перепада давления	от 0 до 62 кПа; от 0 до 160 кПа; от 0 до 250 кПа; от 0 до 1000 кПа; от 0 до 4000 кПа; от 0 до 4000 кПа; от 0 до 1,6 МПа от 0 до 62 кПа**; от 0 до 248 кПа**; от 0 до 2068 кПа**; от 0 до 13789 кПа	γ: ±0,21 % см. примечание 3	3051CD (от 4 до 20 мА)	$\begin{array}{l} \gamma: \\ \text{при } \frac{P_{\text{max}}}{P_{\text{B}}} \leq 10 \\ \pm 0,065 \%; \\ \text{при } \frac{P_{\text{max}}}{P_{\text{B}}} > 10 \\ \pm \left(0,015 + 0,005 \cdot \frac{P_{\text{max}}}{P_{\text{B}}}\right) \% \end{array}$	KFD2-STC4	AAI или SAI	γ: ±0,17 %
	от 0 до 0,1 МПа; от -10 до 10 кПа**; от -100 до 100 кПа**; от -500 до 500 кПа**	γ : от $\pm 0,20$ до $\pm 0,69$ %	EJX 110 (от 4 до 20 мА)	γ: от ±0,04 до ±0,60 %			

1	2	3	4	5	6	7	8
	от 0 до 1100 мм	±5,9 мм		Δ: для исполнения FMP51			
	от 0 до 1100 мм	±3,1 мм		(тросовое, стержневое и коаксиальное			
	от 0 до 1750 мм	±4,0 мм		исполнения зонда): ±2 мм;			
ИК уровня	от 0 до 6700 мм	±12,8 мм	Levelflex (от 4 до	для исполнения FMP54 (тросовое и стержневое			
THE JPOBLE	от 0,2 до 10 м**; от 0 до 6 м**; от 0 до 10 м**	см. примечание 3	(от 4 до 20мА)	(Thocopoe is crenyguenoe		ААІ или	
ИК объемного расхода	от 2,1 до 6,3 м³/ч; от 7,8 до 19,0 м³/ч; от 17,2 до 45,0 м³/ч; от 29,6 до 30,0 м³/ч; от 0,61 до 24,05 м³/ч*; от 2,34 до 93,38 м³/ч*; от 5,15 до 205,70 м³/ч*; от 8,86 до 354,24 м³/ч*	см. примечание 3	Rosemount 8705 (от 4 до 20 мА)	δ: ±0,5 % γ: ±0,05 % (погрешность преобразования в токовый выходной сигнал)	KFD2-STC4	SAI	γ: ±0,17 %

1	2	3	4	5	6	7	8
ИК объемного расхода	от 0,4 до 2002,0 м ³ /ч*; от 1,4 до 20016,0 м ³ /ч	см. примечание 3	Rosemount 8800 (от 4 до 20 мА)	δ (исполнение 8800DF): для жидкости: $\pm 0,65$ % (Re ≥ 20000); ± 2 % (10000 \leq Re < 20000); ± 6 % (5000 \leq Re < 10000); ± 10000 ; ± 100000 ; ± 1000000 ; ± 10000000 ; ± 10000000 ; ± 10000000 ; ± 10000000000 ; $\pm 100000000000000000000000000000000000$	KFD2-STC4	AAI или SAI	γ: ±0,17 %
	от 15,5 до 556844 м ³ /ч**	см. примечание 3	t-mass (от 4 до 20 мА)	$\delta:$ $\pm 1, 1 \cdot \left(1, 5 + 0, 5 \cdot \frac{Q_{\text{max}}}{Q}\right) (\Pi p)$ $0, 01 \cdot Q_{\text{max}} < Q < Q_{\text{max}})$			
	от 32 до 1000 м ³ /ч; от 240 до 7000 м ³ /ч	см. примечание 3	FLOWSIC 600 (от 4 до 20 мА)	δ: ±2 %			

Продолжение	·	1		,		Т	
1	2	3	4	5	6	7	8
ИК объемного расхода	от 160 до 16000 м ³ /ч; от 6 до 110000 м ³ /ч ^{**}	см. примечание 3	USZ 08 (от 4 до 20 мА)	δ : для DN 200 и более: $\pm 0.5\%$ (при $0.05 \cdot Q_B \le Q_u \le Q_B$); $\pm 0.7\%$ (при $Q_H \le Q_u < 0.05 \cdot Q_B$) для типоразмеров менее DN 200: $\pm 1.0\%$ (при $0.05 \cdot Q_B \le Q_u \le Q_B$); $\pm 1.4\%$ (при $Q_H \le Q_u < 0.05 \cdot Q_B$)	KFD2-STC4		γ: ±0,17 %
	от 4,2 до 347560 м ³ /ч**	см. примечание 3	ProBar (от 4 до 20 мА)	δ: от ±1,1 до ±3,0 %		ААІ или	
ИК	от 27 до 2180 кг/ч ^{**}	см. примечание 3	Micro Motion (от 4 до 20 мА)	δ: ±0,1 %		SAI	
массового расхода	от 20 до 720000 кг/ч**	см. примечание 3	t-mass (от 4 до 20 мА)	δ : $\pm 1.1 \cdot \left(1.5 + 0.5 \cdot \frac{Q_{max}}{Q}\right) (при)$ $0.01 \cdot Qmax < Q < Qmax$			
ИК нижнего концен- трацион- ного предела распро- странения	от 0 до 100 % НКПР (метан)	Δ: ±5,51 % НКПР (в диапазон от 0 до 50 % НКПР); δ: ±11,01 % (в диапазоне свыше 50 до 100 % включ.)	Millenium II (от 4 до 20 мА)	Δ: ±5 % НКПР (в диапазон от 0 до 50 % НКПР); δ: ±10 % (в диапазоне свыше 50 до 100 % включ.)	-		γ: ±0,1 %

1 1	2	3	4	5	6	7	8
	от -50 до +50 °C	Δ: ±0,40 °C				AAI или SAI	Δ: ±0,26 °C
	от -50 до +51 °C	Δ: ±0,40 °C					Δ: ±0,26 °C
	от -50 до +58 °C	Δ: ±0,42 °C					Δ: ±0,27 °C
	от -50 до +59 °C	Δ: ±0,42 °C					Δ: ±0,27 °C
	от -50 до +61 °C	Δ: ±0,43 °C			KFD2-UT2		Δ: ±0,28 °C
	от -50 до +100 °C	Δ: ±0,55 °C	TR (HCX Pt100)	I IRNI IRN/WIRNSE I			Δ: ±0,35 °C
ИК темпе-	от -50 до +150 °C	Δ: ±0,70 °C					Δ: ±0,44 °C
ратуры	от -40 до +100 °C	Δ: ±0,54 °C					Δ: ±0,34 °C
	от 0 до +30 °C	Δ: ±0,30 °C					Δ: ±0,16 °C
	от 0 до +50 °C	Δ: ±0,35 °C					Δ: ±0,19 °C
	от 0 до +60 °C	Δ: ±0,38 °C					Δ: ±0,21 °C
	от 0 до +100 °C	Δ: ±0,50 °C					Δ: ±0,28 °C
	от -50 до +500 °C	см. примечание 3	TC TR (HCX Pt100)	Δ (для моделей TR12, TR61, TR62 и TR65): ±(0,3+0,005· t), °C			см. примечание 4

Продолжение 1	2	3	4	5	6	7	8
ИК температуры	от -50 до +50 °C	Δ: ±0,37 °C	TR (HCX Pt100) с TMT82 (от 4 до 20 мА) TC TR (HCX Pt100) с TMT82 (от 4 до 20 мА)	Δ (для моделей TR12, TR61, TR62 и TR65): ±(0,15+0,002· t), °C TMT82: Δ: ±0,1 °C (АЦП); γ: ±0,03 % (ЦАП)	KFD2-STC4	AAI или SAI	γ: ±0,17 %
	от -50 до +51 °C	Δ: ±0,37 °C					
	от -50 до +52 °C	Δ: ±0,37 °C					
	от -50 до +53 °C	Δ: ±0,38 °C					
	от -50 до +54 °C	Δ: ±0,38 °C					
	от -50 до +55 °C	Δ: ±0,38 °C					
	от -50 до +56 °C	Δ: ±0,38 °C					
	от -50 до +57 °C	Δ: ±0,39 °C					
	от -50 до +60 °C	Δ: ±0,39 °C					
	от -50 до +62 °C	Δ: ±0,40 °C					
	от -50 до +150 °C	Δ: ±0,65 °C					
	от -50 до +500°C	см. примечание 3		 Δ (для моделей TR12, TR61, TR62 и TR65): ±(0,3+0,005· t), °C TMT82: Δ: ±0,1 °C (АЦП); γ: ±0,03 % (ЦАП) 			
ИК силы тока	от 4 до 20 мА	γ: ±0,10 % γ: ±0,17 %	-	-	- KFD2-STC4	AAI или SAI	γ: ±0,10 % γ: ±0,17 %

1	2	3	4	5	6	7	8
ИК							
воспроиз-	от 4 до 20 мА	γ: ±0,31 %			KFD2-SCD2	AAI543	γ: ±0,31 %
ведения	014 до 20 мА	γ. ±0,51 70	_	-	KIDZ-SCDZ	AA1343	γ. ±0,51 70
силы тока							

* Нормированы с учетом погрешностей промежуточного ИП (барьера искрозащиты) и модуля ввода/вывода сигналов.

** Указан максимальный диапазон измерений. Диапазон измерений может быть настроен на другой меньший диапазон в соответствии с эксплуатационной документацией на ИП.

Примечания

- 1 НСХ номинальная статическая характеристика; АЦП аналогово-цифровое преобразование; ЦАП цифро-аналоговое преобразование.
- 2 Приняты следующие обозначения:
- P_{max} максимальный верхний предел измерений, кПа;
- Р_в настроенный верхний предел измерений, кПа;
- Re число Рейнольдса;
- Q_{тах} верхний предел диапазона измерений массового расхода или объемного расхода, приведенного к стандартным условиям;
- Q текущее измеряемое значение массового расхода или объемного расхода, приведенного к нормальным условиям;
- $-Q_{\rm B}$ верхний предел диапазона измерений объемного расхода при рабочих условиях, м³/ч;
- $-Q_{\rm H}$ нижний предел диапазона измерений объемного расхода при рабочих условиях, м³/ч;
- $Q_{\scriptscriptstyle H}$ измеренное значение объемного расхода при рабочих условиях, м 3 /ч;
- t измеренная температура, °С;
- $-\Delta$ абсолютная погрешность;
- $-\delta$ относительная погрешность;
- γ приведенная погрешность (нормирующим значением для приведенной погрешности является разность между максимальным и минимальным значениями диапазона измерений).
 - 3 Пределы допускаемой основной погрешности ИК, рассчитывают по формулам:
 - относительная $\delta_{\text{ик}}$, %:

$$\delta_{_{\rm HK}} = \pm 1, 1 \cdot \sqrt{\delta_{_{\rm \Pi\Pi}}{^2} + \left(\gamma_{_{\rm B\Pi\Pi}}{^2} + \gamma_{_{\rm B\Pi}}{^2}\right) \cdot \left(\frac{X_{_{\rm max}} - X_{_{\rm min}}}{X_{_{_{\rm H3M}}}}\right)^2} \ ,$$

где $\delta_{_{\text{III}}}$ - пределы допускаемой основной относительной погрешности первичного ИП ИК, %;

 $\gamma_{\text{впп}}$ - пределы допускаемой основной приведенной погрешности первичного ИП при преобразовании сигнала в токовый выходной сигнал (при наличии), %;

 $\gamma_{_{B\Pi}}$ - пределы допускаемой основной приведенной погрешности промежуточного ИП и модуля ввода/вывода сигналов, %;

Х значение измеряемого параметра, соответствующее максимальному значению диапазона аналогового сигнала, в абсолютных единицах измерений;

х значение измеряемого параметра, соответствующее минимальному значению диапазона аналогового сигнала, в абсолютных единицах измерений;

Х - измеренное значение, в абсолютных единицах измерений;

– абсолютная $\Delta_{\text{ик}}$, в абсолютных единицах измерений:

$$\Delta_{\rm MK} = \pm 1, 1 \cdot \sqrt{\Delta_{\rm \Pi\Pi}^2 + \left(\gamma_{\rm B\Pi} \cdot \frac{X_{\rm max} - X_{\rm min}}{100}\right)^2} ,$$

где $\Delta_{\text{пп}}$ - пределы допускаемой основной абсолютной погрешности первичного ИП ИК, в абсолютных единицах измерений;

– приведенная $\gamma_{\text{ик}}$, %:

$$\gamma_{\text{MK}} = \pm 1, 1 \cdot \sqrt{\gamma_{\text{III}}^2 + \gamma_{\text{BII}}^2}$$

где γ_{mn} - пределы допускаемой основной приведенной погрешности первичного ИП ИК, %.

4 Пределы допускаемой основной абсолютной погрешности вторичного ИП для ИК температуры $\Delta_{\text{BП}t}$, °C, рассчитывают по формуле

$$\Delta_{\text{BIIt}} = \pm \sqrt{\left(0,06 \cdot \frac{t}{100} + 0,1 \cdot \frac{D_t}{100} + 0,1\right)^2 + \left(0,1 \cdot \frac{D_t}{100}\right)^2} \;,$$

где D_{\perp} - настроенный диапазон измерений температуры, °С.

5 Шкала ИК, применяемых для измерения перепада давления на стандартном сужающем устройстве и уровня, установлена в ИС соответственно в единицах измерения расхода и в процентах.

6 При выходе из строя первичных ИП допускается их замена на средства измерений утвержденного типа с аналогичными или лучшими метрологическими и техническими характеристиками.

7 Для расчета погрешности ИК в условиях эксплуатации:

- приводят форму представления основных и дополнительных погрешностей измерительных компонентов ИК к единому виду (приведенная, относительная, абсолютная);
- для каждого измерительного компонента ИК рассчитывают пределы допускаемых значений погрешности в условиях эксплуатации путем учета основной и дополнительных погрешностей от влияющих факторов.

Пределы допускаемых значений погрешности Δ_{CM} измерительного компонента ИК в условиях эксплуатации рассчитывают по формуле

$$\Delta_{CH} = \pm \sqrt{\Delta_0^2 + \sum_{i=0}^n \Delta_i^2} \ ,$$

где Δ_0 - пределы допускаемой основной погрешности измерительного компонента;

 Δ_{i} - погрешности измерительного компонента от i-го влияющего фактора в условиях эксплуатации при общем числе n учитываемых влияющих факторов.

Для каждого ИК рассчитывают границы, в которых с вероятностью равной 0,95 должна находиться его погрешность $\Delta_{\rm UK}$ в условиях эксплуатации, по формуле

$$\Delta_{\text{MK}} = \pm 1, 1 \cdot \sqrt{\sum_{j=0}^k \left(\Delta_{\text{CMj}}\right)^2} \ , \label{eq:MK_MK}$$

где $\Delta_{ ext{CU}j}$ - пределы допускаемых значений погрешности $\Delta_{ ext{CU}}$ j-го измерительного компонента ИК в условиях эксплуатации.

Знак утверждения типа

наносится на титульный лист паспорта типографским способом.

Комплектность средства измерений

Таблица 5 - Комплектность ИС

Наименование	Обозначение	Количество
Система измерительная дожимной компрессорной станции ДКС ООО «ЛУКОЙЛ-Пермнефтеоргсинтез», заводской № DKS2014	-	1 шт.
Система измерительная дожимной компрессорной станции ДКС ООО «ЛУКОЙЛ-Пермнефтеоргсинтез». Руководство по эксплуатации	-	1 экз.
Система измерительная дожимной компрессорной станции ДКС ООО «ЛУКОЙЛ-Пермнефтеоргсинтез». Паспорт	-	1 экз.
Государственная система обеспечения единства измерений. Система измерительная дожимной компрессорной станции ДКС ООО «ЛУКОЙЛ-Пермнефтеоргсинтез». Методика поверки	МП 1711/1-311229-2017	1 экз.

Поверка

осуществляется по документу МП 1711/1-311229-2017 «Государственная система обеспечения единства измерений. Система измерительная дожимной компрессорной станции ДКС ООО «ЛУКОЙЛ-Пермнефтеоргсинтез». Методика поверки», утвержденному ООО Центр Метрологии «СТП» 17 ноября 2017 г.

Основные средства поверки:

- средства поверки в соответствии с документами на поверку средств измерений,
 входящих в состав ИС;
- калибратор многофункциональный MC5-R-IS (регистрационный номер 22237-08): диапазон воспроизведения силы постоянного тока от 0 до 25 мA, пределы допускаемой основной погрешности воспроизведения $\pm (0,02\%$ показания + 1 мкA); диапазон воспроизведения сопротивления от 1 до 4000 Ом, пределы допускаемой основной погрешности воспроизведения $\pm 0,04\%$ показания или ± 30 мОм (выбирается большее значение); диапазон измерений силы постоянного тока от минус 100 до 100 мA, пределы допускаемой основной погрешности измерений $\pm (0,02\%$ показания $\pm 1,5$ мкA).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик ИС с требуемой точностью.

Знак поверки наносится на свидетельство о поверке ИС.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные документы, устанавливающие требования к системе измерительной дожимной компрессорной станции ДКС ООО «ЛУКОЙЛ-Пермнефтеоргсинтез»

ГОСТ Р 8.596-2002 Государственная система обеспечения единства измерений. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «ЛУКОЙЛ-Пермнефтеоргсинтез» (ООО «ЛУКОЙЛ-Пермнефтеоргсинтез»)

ИНН 5905099475

Адрес: 614055, г. Пермь, ул. Промышленная, д. 84 Телефон: (342) 220-24-67, факс: (342) 220-22-88

Web-сайт: http://www.pnos.lukoil.com E-mail: lukpnos@pnos.lukoil.com

Испытательный центр

Общество с ограниченной ответственностью Центр Метрологии «СТП»

Адрес: 420107, Республика Татарстан, г. Казань, ул. Петербургская, д. 50, корп. 5, офис 7

Телефон: (843) 214-20-98, факс: (843) 227-40-10

Web-сайт: http://www.ooostp.ru

E-mail: office@ooostp.ru

Аттестат аккредитации ООО Центр Метрологии «СТП» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311229 от 30.07.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «____»____2018 г.