ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «ЖБЗ № 1»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «ЖБЗ № 1» (далее по тексту - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень - измерительно-информационные комплексы (ИИК), которые включают в себя трансформаторы тока (ТТ), трансформаторы напряжения (ТН) и счетчики активной и реактивной электроэнергии, вторичные измерительные цепи и технические средства приемапередачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2,3.

2-й уровень - информационно-вычислительный комплекс (ИВК), включающий в себя каналообразующую аппаратуру, сервер баз данных (БД) АИИС КУЭ, устройство синхронизации времени УСВ-2 (далее - УСВ-2) автоматизированные рабочие места персонала (АРМ) и программное обеспечение (далее - ПО) «Пирамида 2000».

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на верхний уровень системы, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации, ее накопление и передача, оформление отчетных документов. Передача информации в заинтересованные организации осуществляется от сервера БД с помощью электронной почты по выделенному каналу связи по протоколу TCP/IP.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровень ИИК и ИВК. АИИС КУЭ оснащена УСВ-2, на основе приемника сигналов точного времени от спутников глобальной системы позиционирования (GPS). УСВ-2 обеспечивает автоматическую коррекцию часов сервера БД. Коррекция часов сервера БД проводится вне зависимости от наличия расхождении часов сервера БД и времени УСВ-2. Часы счетчиков синхронизируются от часов сервера БД с периодичностью не чаще, чем 1 раз в сутки.

Журналы событий счетчика электроэнергии и сервера БД отражают: время (дата, часы, минуты) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Программное обеспечение

В АИИС КУЭ используется ПО «Пирамида 2000» версии не ниже 3.0, в состав которого входят модули, указанные в таблице 1. ПО «Пирамида 2000» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО «Пирамида 2000».

Таблица 1 - Метрологические значимые модули ПО

Идентификационные признаки		Значение		
Идентификационные наименования модулей ПО		Metrology.dll		
Номер версии (идентификационный номер) ПО		Не ниже 3.0		
Цифровой идентификатор ПО		52e28d7b608799bb3ccea41b548d2c83		
Алгоритм вычисления цифрового идентификатора ПО		MD5		

ПО «Пирамида 2000» не влияет на метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 - Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики

Номер ИК	Наименование объекта	Измерительные компоненты				Метрологические характеристики ИК	
		TT	ТН	Счётчик	Вид электроэнергии	Основная погрешность, %	Погрешность в рабочих условиях, %
1	2	3	4	5	6	7	8
1	ГПП-1 110/6 кВ «Каучук»,	ТПЛМ-10 Ул. т. 0.5	НТМИ-6-66 Кл. т. 0,5	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	активная	±1,1	±3,0
	РУ-6 кВ, 2 СШ 6 кВ, яч. 10	Кл. т. 0,5 400/5	6000/100		реактивная	±2,7	±4,7
2	ГПП-1 110/6 кВ «Каучук»,	«Каучук», У-6 кВ, 4 СШ Кл. т. 0,5	НТМИ-6-66 Кл. т. 0,5 6000/100	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	активная	±1,1	±3,0
	РУ-6 кВ, 4 СШ 6 кВ, яч. 32				реактивная	±2,7	±4,7

Пределы допускаемой погрешности СОЕВ АИИС КУЭ не превышают ±5 с.

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3. Погрешность в рабочих условиях указана для $\cos j = 0.8$ инд, I=0.05 $I_{\text{ном}}$, температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК № 1 2 от плюс 10 до плюс 28 °C.
- 4. Допускается замена измерительных трансформаторов, счетчиков и УСВ-2 на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2. Замена оформляется актом в установленном на объекте порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Основные технические характеристики ИК приведены в таблице 3.

Таблица 3 - Основные технические характеристики ИК

1 аолица 3 - Основные технические характеристики ик	T
Наименование характеристики	Значение
Количество измерительных каналов	2
Нормальные условия:	
параметры сети:	
- напряжение, % от U _{ном}	от 98 до 102
- tok, % ot I_{hom}	от 100 до 120
- частота, Гц	от 49,85 до 50,15
- коэффициент мощности cosj	0,9
- температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение, % от U _{ном}	от 90 до 110
- ток, % от I _{ном}	от 5 до 120
- коэффициент мощности	от 0,5 $_{\text{инд}}$. до 0,8 $_{\text{емк}}$.
- частота, Гц	от 49,6 до 50,4
- температура окружающей среды для ТТ и ТН, °С	от -40 до +70
- температура окружающей среды в месте расположения	
электросчетчиков, °С:	от -40 до +60
- температура окружающей среды в месте расположения	
сервера, °С	от +10 до +30
Надежность применяемых в АИИС КУЭ компонентов:	
Электросчетчики:	
- среднее время наработки на отказ, ч, не менее:	
для электросчетчика СЭТ-4ТМ.03М	165000
- среднее время восстановления работоспособности, ч	2
Сервер:	
- среднее время наработки на отказ, ч, не менее	70000
- среднее время восстановления работоспособности, ч	1
Глубина хранения информации	
Электросчетчики:	
- тридцатиминутный профиль нагрузки в двух	45
направлениях, сутки, не менее	
- при отключении питания, лет, не менее	12
Сервер:	
- хранение результатов измерений и информации состояний	
средств измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;

- журнал сервера БД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и сервере БД;
 - пропадание и восстановление связи со счетчиком;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) ООО «ЖБЗ № 1» типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 - Комплектность АИИС КУЭ

Наименование	Тип	Рег №	Количество, шт.
Трансформатор тока	ТПЛМ-10	2363-68	4
Трансформатор напряжения	НТМИ-6-66	2611-70	2
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.03М	36697-12	2
Устройство синхронизации времени	УСВ-2	41681-09	1
Программное обеспечение	«Пирамида 2000»	-	1
Методика поверки	МП 005-2018	-	1
Паспорт-Формуляр	РЭК 02.070.00.00 ФО	-	1

Поверка

осуществляется по документу МП 005-2018 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «ЖБЗ № 1». Методика поверки», утвержденному ООО «Спецэнергопроект» 08.02.2018 г.

Основные средства поверки:

- трансформаторов тока - в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;

- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009. «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений без отключения цепей»;
- по МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений без отключения цепей»;
- счетчиков СЭТ-4ТМ.03М по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145 РЭ1, согласованному с ГЦИ СИ ФБУ «Нижегородский ЦСМ» «04» мая 2012 г.;
- радиочасы МИР РЧ-02, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений № 46656-11;
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-02;
- термогигрометр CENTER (мод.315): диапазон измерений температуры от минус 20 до плюс 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100%, дискретность 0,1%, регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений № 22129-09;
- миллитесламетр Ш1-15У: диапазон измерений магнитной индукции от 0,01 до 19,99 мТл регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений № 28134-04).

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих - кодом и (или) оттиском клейма поверителя.

Сведения о методиках (методах) измерений

приведены в документе: «Методика измерений электрической энергии и мощности с использованием АИИС КУЭ ООО «ЖБЗ № 1», аттестованной ООО «Спецэнергопроект», аттестат об аккредитации № RA.RU.312236 от 20.07.2017.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «ЖБЗ № 1»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

Изготовитель

Общество с ограниченной ответственностью «Региональная энергетическая компания» (ООО «РЭК»)

ИНН 5262252639

Адрес: 603137, Нижегородская обл., г. Нижний Новгород, ул. 40 лет Победы, дом №4, пом. № П 7

Тел.: 8 (831) 234-01-73 Факс: 8 (831) 234-01-73 E-mail: info@rek-21.ru

Заявитель

Общество с ограниченной ответственностью «Стройэнергетика» (ООО «Стройэнергетика»)

Адрес: 129337, г. Москва, ул. Красная Сосна, д. 20, стр. 1, комн. 4

Тел.: 8 (926) 786-90-40

E-mail: <u>Stroyenergetika@gmail.com</u>

Испытательный центр

Общество с ограниченной ответственностью «Спецэнергопроект»

(ООО «Спецэнергопроект»)

Юридический адрес: 111024, г. Москва, ул. Авиамоторная, д. 50, к. 2

Адрес: 119119, г. Москва, Ленинский пр. д.42, к.6

Тел./факс: 8 (495) 410-28-81 E-mail: gd.spetcenergo@gmail.com

Аттестат аккредитации ООО «Спецэнергопроект» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.312426 от 30.01.2018 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. « ___ » _____2018 г.