Федеральное государственное унитарное предприятие «ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИЧЕСКОЙ СЛУЖБЫ» (ФГУП «ВНИИМС»)

УТВЕРЖДАЮ

Заместитель директора по производственной метрологии ФГУП «ВНИИМС»

Н.В. Иванникова

FEREDL » HOWOON 2017 I

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

Комплексы измерительно-вычислительные ТРИАЛ-1

Методика поверки

СТ01-017.01МП

г. Москва 2017

СОДЕРЖАНИЕ

	Стр.	
1 Введение	3	
2 Операции поверки	3	
3 Средства поверки	3	
4 Требования безопасности	4	
5 Условия поверки	4	
6 Подготовка к поверке	4	
7 Проведение поверки	4	
8 Проверка соответствия программного обеспечения средства измерений	6	
9 Оформление результатов поверки	6 .	
Приложение А - Форма протокола поверки	7	

1 ВВЕДЕНИЕ

- 1.1 Настоящая методика поверки (далее по тексту методика) распространяется на комплексы измерительно-вычислительные ТРИАЛ-1 (далее по тексту комплексы) и устанавливает методику первичной и периодической поверок.
 - 1.2 Интервал между поверками 1 год.

2 ОПЕРАЦИИ ПОВЕРКИ

2.1 При проведении поверки должны выполнятся операции, указанные в таблице 1.

Таблица 1 – Операции поверки

		Проведение операции при		
Наименование операции	Номер пункта методики поверки	первичной поверке	периодической поверке	
1 Внешний осмотр	7.1	да	да	
2 Опробование	7.2	да	да	
3 Проверка погрешностей ИК комплекса	7.3	да	да	
4 Проверка соответствия программного обеспечения средства измерений	8	да	да	
5 Оформление результатов поверки	9	да	да	

2.2 Допускается проведение поверки отдельных величин и диапазонов преобразований, в соответствии с заявлением владельца комлекса с обязательным указанием в свидетельстве о поверке информации об объёме проведённой поверки.

3 СРЕДСТВА ПОВЕРКИ

3.1 При проверке погрешности ИК измерения сигналов силы и напряжения постоянного тока, а также измерения амплитудного значения напряжения переменного тока, в качестве эталона для задания входного сигнала рекомендуется использовать универсальный калибратор H4-7, обеспечивающий погрешность воспроизведения силы постоянного тока: $(0,004~\%~I~+~0,0004~\%~I_\Pi)$, напряжения постоянного тока: $(0,0008~\%~U~+~0,00008~\%~U_\Pi)$, напряжения переменного тока: $(0,04~\%~U~+~0,004~\%~U_\Pi)$ или аналогичный прибор, имеющий в диапазоне задаваемого входного сигнала абсолютную погрешность не более 1/5 абсолютной погрешности проверяемого ИК.

Примечание. Здесь и далее при невозможности выполнения соотношения "1/5" допускается использовать эталоны с упомянутым соотношением до "1/3" и вводить контрольный допуск на погрешность проверяемого ИК, равный 0,8 от допускаемых значений границ его погрешности.

3.2 При проверке погрешности ИК измерения сигналов частоты переменного тока, в качестве эталона для задания входного сигнала рекомендуется использовать генератор сигналов сложной формы со сверхнизким уровнем искажения DS360, обеспечивающий погрешность установки частоты не более 25·10⁻⁶F. При проведении проверки допускается использовать и иные контрольно-измерительные приборы, имеющие в диапазоне задаваемого сигнала суммарную абсолютную погрешность не более 1/5 абсолютной погрешности проверяемого ИК.

4 ТРЕБОВАНИЯ КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

4.1 Поверку комплекса должен выполнять поверитель, прошедший инструктаж по технике безопасности, освоивший работу с комплексами и используемыми эталонами. Поверитель должен быть аттестован в соответствии с действующими нормативными документами.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 5.1 При проведении поверки необходимо соблюдать требования техники безопасности, предусмотренные «Правилами технической эксплуатации электроустановок потребителей» и «ПОТ Р М-016-2001. РД 153-34.0-03.150-00. Межотраслевыми Правилами по охране труда (Правила безопасности) при эксплуатации электроустановок». ГОСТ 12.2.007.0-75, ГОСТ Р 12.1.019-2009, ГОСТ 12.2.091-2002 и требования безопасности, указанные в технической и эксплуатационной документации на комплексы и используемые эталоны.
- 5.2 Любые подключения приборов проводить только при отключенном напряжении питания комплекса.

ВНИМАНИЕ! На открытых контактах клеммных колодок комплекса напряжение опасное для жизни – 220 В.

6 УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ

- - 6.2 При подготовке к поверке:
- подготовить к работе средства измерений, используемые при поверке в соответствии с их руководствами по эксплуатации (все средства измерений должны быть исправны и поверены);
 - проверить целостность электрических цепей измерительных каналов (ИК);
 - включить питание измерительных преобразователей и аппаратуры комплекса;
 - запустить программу градуировки в соответствии с РЭ комплекса;
- перед началом поверки измерить и занести в протокол поверки условия окружающей среды (температура, влажность воздуха и атмосферное давление).

7 ПРОВЕДЕНИЕ ПОВЕРКИ

- 7.1 Внешний осмотр
- 7.1.1 При внешнем осмотре проверить:
- отсутствие механических повреждений;
- исправность органов управления (четкость фиксации положения переключателей и кнопок);
 - отсутствие нарушений экранировки линий связи;
 - отсутствие обугливания изоляции на внешних токоведущих частях комплекса;
 - отсутствие неудовлетворительного крепления разъемов;
 - заземление стойки управления комплекса;
 - наличие товарного знака изготовителя и заводского номера комплекса.

- 7.1.2 Результаты считать осмотра положительными, если выполняются вышеперечисленные требования. В противном случае поверка не проводится до устранения выявленных недостатков.
 - 7.2 Опробование
 - 7.2.1 При опробовании комплекса необходимо:

включить комплекс, подав напряжение питания на все его компоненты; запустить ПО Гарис.

7.2.2 Результаты опробования считать положительными, если ПО Гарис запускается и в окне «По текущим А и В» отображается информация с действующими значениями измеряемых величин.

7.3 Проверка погрешностей ИК комплекса

Для каждого ИК комплекса выполняют следующие операции:

- 7.3.1 Подключают эталонное оборудование к входным для данного ИК клеммам комплекса.
- 7.3.1.1 Для ИК измерения сигналов силы и напряжения постоянного тока, а также измерения амплитудного значения напряжения переменного тока подключить калибратор к соответствующему нормирующему преобразователю блока нормирующих преобразователей (БНП).
- 7.3.1.2 Для ИК измерения частоты переменного тока подключить генератор к соответствующему нормирующему преобразователю БНП.
 - 7.3.2 Запустить ПО Гарис.
- 7.3.3 Открыть таблицу датчиков. В строке поверяемого ИК нажать кнопку «Градуировка».
- 7.3.4 Определение погрешности проводится не менее, чем в 5 точках, i = 1, 2, 3, 4, 5,равномерно распределенных в пределах диапазона преобразования.

Для каждой проверяемой точки i=1,...,5 выполняют следующие операции:

- устанавливают значение входного сигнала X_i от соответствующего измеряемому параметру эталонного прибора и считывают в окне «По текущим А и В» измеренное значение входного сигнала Y_i, считанное значение заносят в таблицу 2;

-	-					1
Га	n	П	и	Ħ	a	1

i	Номинальное значение входного сигнала X _i , мА/мВ/В/Гц	Измеренное значение входного сигнала Y _i , мА/мВ/В/Гц	Пределы допускаемой приведенной к верхнему пределу диапазона преобразования погрешности ут, %	Приведенная погрешность γ_i , %
1				
2				
3				
4				
5				

- за оценку приведенной погрешности у измерительного канала в і-й проверяемой точке принимают значение, вычисляемое по формуле: $\gamma_i = \frac{Y_i - X_i}{R} \cdot 100\%$

$$\gamma_{\rm i} = \frac{Y_i - X_i}{R} \cdot 100\%$$

здесь R - верхний предел диапазона измерений.

ИК считают прошедшим поверку, если в каждой из проверяемых точек выполняется неравенство $|\gamma_i| < |\gamma_T|$, где γ_T – пределы допускаемой приведенной погрешности, нормируемые в технической документации.

8 ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ СРЕДСТВА ИЗМЕРЕНИЙ

На ПЭВМ комплекса запустить файл Garis.exe и открыть окно 🐉 «О программе» (меню Справка -> О программе Гарис). Идентификационные наименования отображаются в верхней части окна «О программе».

Метрологически значимая часть ПО комплекса представляет собой:

- исполняемый файл Garis.exe Гарис (Гибкий Адаптивный Регулятор для Испытательных Систем): многоканальные статические и динамические испытания;
- модуль GarisGrad.dll фильтрация, градуировочные расчеты;
- модуль GarisAspf.dll вычисление амплитуды, статики, фазы, частоты и других интегральных параметров сигнала;
- модуль GarisInterpreter.dll интерпретатор формул для вычисляемых каналов;
- драйверы платы L780 фирмы L-Card файлы ldevpci.sys, ldevs.sys.

Идентификационные данные (признаки) метрологически значимой части ПО указаны в разделе 17 формуляра.

Для вычисления цифрового идентификатора (хеш-суммы) файла метрологически значимого программного компонента использовать данные ПО Гарис, которое само вычисляет хеш-суммы по алгоритму md5.

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1 Результаты поверки заносятся в Протокол поверки (Приложение А).
- 9.2 При положительных результатах поверки оформляется свидетельство о поверке.
- 9.2.1 В случае проведения поверки отдельных ИК из состава комплекса в соответствии с заявлением владельца, в свидетельстве о поверке указывается информация об объеме проведенной поверки.
- 9.3 При отрицательных результатах поверки комплекс к применению не допускается и на него выдается извещение о непригодности к применению с указанием причин.

Разработали:

Начальник отдела 201 ФГУП «ВНИИМС»

жеееее А.М. Каширкина » А.С. Смирнов

Инженер 3 категории отдела 201 ФГУП «ВНИИМС»

Форма протокола поверки

П	рил	TOST	ATT	TTA	1
11	DMJ.	IU/N	CH	ис	1

ΟЛ

	поверки ИК	измерительно заводской			ого комплекс	а ТРИАЛ-1	
2 Дата 3 Сре,	поверкиа поверки дства поверки бочий эталон						
Наименование		воспроизвед	Границы диапазо воспроизведения с постоянного тока, нижний верх		погрег	опускаемой ешности ведения, мА	
4 Усл 4.1 Те 4.2 От	спомогательные средствовия поверки мпература окружающей гносительная влажность гмосферное давление, м	го воздуха, °С в воздуха, %	с мето	одикой пов	верки СТ01-017	7.01 MII.	
5 Peay 5.1 Br 5.2 Pe 5.3 Pe 5.3.1	ультаты эксперименталь нешний осмотр: зультаты опробования: зультаты метрологичес Условия исследования 1 Определение приведен	ьных исследований ких исследований					
i	Номинальное значение входного сигнала X_i , мА/мВ/В/Гц	Измеренное значение входног сигнала Y _i , мА/мВ/В/Гц	п	риведенно пределу преобра	опускаемой к верхнему диапазона азования сости ут, %	Приведенная погрешность γ_i , %	
1 2 3 4 5				Погреши	(No. 11)		
Расче 6 Выв	т погрешности ИК пров вод	водится в соответст	гвии с	методикой	й поверки СТ0	1-017.01 МП.	
	очередной поверки			••••			
Повер	оитель(подпись, дата)			(ф.	и.о.)	