УТВЕРЖДАЮ

Первый заместитель генерального директора - заместитель по научной

работе ФГУП «ЖНИНФТРИ»

А.Н. Шипунов

" 26 "

<u>2</u>017/г.

Инструкция Тестер протоколов сигнализации MD8475A

> Методика поверки МП 651-17-017

1 Основные положения

1.1. Настоящая методика предназначена для проведения поверки тестеров протоколов сигнализации MD8475A, изготавливаемых фирмой «Anritsu Corporation», Япония. (далее – MD8475A).

White Adalpha Land

1.2 Интервал между поверками – 1 год.

2 Операции поверки

2.1 При проведении поверки должны производиться операции, указанные в таблице 1.

Таблица 1 – Операции поверки

	Номер пункта	Проведение операций при	
Наименование операции	методики	первичной поверке	периодической поверке
Внешний осмотр	7.1	да	да
Опробование	7.2	да	да
Идентификация программного обеспечения	7.3	да	да
Определение относительного отклонения частоты опорного генератора через 10 минут после включения питания от установившегося значения через 24 часа после включения питания	7.4	да	да
Определение значения КСВН входных/выходных высокочастотных соединителей	7.5	да	да
Определение диапазона и погрешности установки уровня выходного сигнала	7.6	да	да
Определение уровня негармонических паразитных составляющих относительно уровня основного сигнала	7.7	да	да
Определение уровня гармонических составляющих относительно уровня основного сигнала	7.8	да	да
Определение среднеквадратического значения величины модуля вектора ошибки (EVM) и фазовой ошибки*	7.9	да	да

^{*} при наличии встраиваемых модулей соответствующих стандартов связи.

При получении отрицательных результатов в процессе выполнения операций по любому из пунктов таблицы 1 MD8475A признается непригодным и к эксплуатации не допускается.

3 Средства поверки

3.1 Основные средства поверки приведены в таблице 2.

Таблица 2 - Основные средства поверки

	Наименование рабочих эталонов или вспомогательных средств поверки; номер документа,
Пункт	регламентирующего технические требования к рабочим эталонам или вспомогательным сред-
МΠ	ствам; разряд по государственной поверочной схеме и (или) метрологические и основные
	технические характеристики средства поверки
	Частотомер Agilent 53230A. Входная частота от 1 до 350 МГц. Пределы допускаемой
	относительной погрешности измерений частоты $\pm 10^{-6}$
7.4	Стандарт частоты рубидиевый FS725. Пределы допускаемой относительной погреш-
	ности воспроизведения частоты 5, 10 МГц ±5·10 ⁻¹¹
75	Измеритель комплексных коэффициентов передачи и отражения «ОБЗОР-304», диа-
	пазон частот от 0,3 до 3200 МГц
	Преобразователь измерительный NRP-Z91. Диапазон частот от 0 до 6 ГГц, динамиче-
7.6	ский диапазон от -67 до 23 дБ/мВт, пределы допускаемой погрешности измерений
	мощности $\pm 6\%$)
	Анализатор сигналов в реальном масштабе времени R&S FSVR13, диапазон частот от

- 7.8, 7.9 10 Гц до 13,6 ГГц, погрешность измерения уровня ± 0 ,4 дБ, остаточное среднеквадратическое значение EVM(модуляция QPSK): 0,5 %
- 3.2 Вместо указанных в таблице 2 средств поверки допускается применять другие аналогичные средства поверки, обеспечивающие определение метрологических характеристик с требуемой точностью.
- 3.3 Применяемые при поверке средства измерений и рабочие эталоны должны быть поверены и иметь свидетельства о поверке с неистекшим сроком действия на время проведения поверки или оттиск поверительного клейма на приборе или в документации.

4 Требования безопасности при поверке

- 4.1 При проведении операций поверки должны быть соблюдены меры безопасности, указанные в соответствующих разделах эксплуатационной документации на средства измерений, используемых при поверке.
- 4.2 К проведению поверки MD8475A допускается инженерно-технический персонал со среднетехническим или высшим радиотехническим образованием, имеющим опыт работы с радиотехническими установками, ознакомленный с руководством по эксплуатации (РЭ) и документацией по поверке и имеющий право на поверку (аттестованными в качестве поверителей).

5 Условия поверки

5.1. При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха

(25±5) °C;

- относительная влажность воздуха

от 30 до 80 %;

- атмосферное давление

от 84,0 до 106,7 кПа;

- напряжение питающей сети

 (220 ± 20) B;

- частота питающей сети

 $(50\pm0.5) \Gamma_{II}$.

6 Подготовка к поверке

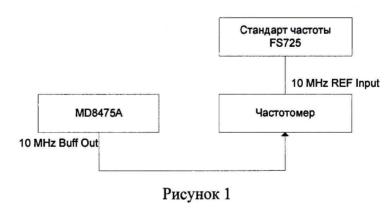
- 6.1 Поверитель должен изучить руководство по эксплуатации поверяемого MD8475A и используемых средств поверки.
- 6.2 Поверяемый MD8475A должен быть выдержан в помещении в расположении средств поверки не менее 2-х часов.
- 6.3 MD8475A и средства поверки должны быть подготовлены к работе в соответствии с РЭ.

7 Методы (методики) поверки

- 7.1 Внешний осмотр
- 7.1.1 При внешнем осмотре проверить:
- отсутствие механических повреждений и ослабление элементов, чёткость фиксации их положения;
- чёткость обозначений, чистоту и исправность разъёмов и гнёзд, наличие и целостность пломб;
 - комплектность согласно требованиям эксплуатационной документации;
 - наличие маркировки согласно требованиям эксплуатационной документации.

Результаты внешнего осмотра считать положительными, если выполняются выше перечисленные требования.

- 7.2 Опробование MD8475A
- 7.2.1 Включить МD8475А и дать прогреться в течение 30 минут.
- 7.2.2 Проверить загрузку ОС Windows;
- 7.2.3 В случае успешной загрузки произвести запуск программы Maintenance Tool, выбрать и запустить режим полной калибровки.


Результаты опробования считать положительными, если ОС Windows запускается без ошибок, процедура калибровки с помощью инструмента Maintenance Tool выполняется без сообщений об ошибках.

- 7.3 Проверка программного обеспечения
- 7.3.1 Для проверки установленного на MD8475A программного обеспечения использовать следующий порядок действий
 - проверить номера версий ПО;
 - проверить работоспособность системы
- 7.3.2 Для проверки версий ПО в меню Start (Пуск) на панели задач Windows выберите All Programs (Все программы)/ Anritsu /MX847500A / Version List.
- 7.3.3 Для проверки работоспособности системы MD8475A меню Start (Пуск) на панели задач Windows выберите All Programs (Все программы) /Anritsu/ MX847500A/ SelfChk. При появлении окна SelfChk щелкните по кнопке Check.
- 7.3.4 Результаты поверки считать положительными, если процедура самопроверки завершается успешно и идентификационные данные базового ПО соответствуют данным приведены в таблице 3.

Таблица 3 - Идентификационные данные ПО

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	MX847501A	MX847500A
Номер версии (идентификационный номер) ПО	не ниже 5.00	не ниже 5.00
Цифровой идентификатор ПО(серийный номер)	-	=

- 7.4 Определение относительного отклонения частоты опорного генератора через 10 минут после включения питания от установившегося значения через 24 часа после включения питания
- 7.4.1 Произвести калибровку частоты опорного кварцевого генератора в соответствии с руководством по эксплуатации на MD8475A;
 - 7.4.2 Соединить СИ согласно схеме, приведенной на рисунке 1.

- 7.4.3 Через 10 минут после включения измерить с помощью частотомера выходную частоту на разъеме 10 MHz Buff Output блока MD8475A. Зафиксировать значение $f_{_1}$ с точностью до 0,1 Γ ц.
- 7.4.4 Через 24 часа после первого измерения измерить с помощью частотомера выходную частоту на разъеме 10 MHz Buff Output блока MD8475A. Зафиксировать значение f_2 с точностью до 0,1 Γ ц
 - 7.4.5 Рассчитать относительное отклонение частоты опорного генератора по фор-

муле (1):

$$\delta f = \frac{f_2 - f_1}{f_2} \tag{1}$$

Результаты поверки считать положительными, если значения относительного отклонения частоты опорного генератора через 10 минут после включения питания от установившегося значения через 24 часа после включения питания находится в пределах $\pm 5 \cdot 10^{-8}$

- 7.5 Определение значения КСВН входных/выходных высокочастотных соединителей
- 7.5.1 Выполнить калибровку измерителя, используя следующий комплект мер: элемент с разомкнутой на конце линией, короткозамыкатель и согласованную нагрузку на конце кабеля.
- 7.5.2 Установить на измерителе начальную частоту 500 МГц и конечную частоту 3 ГГц.
- 7.5.3 Соединить испытуемый MD8475A и измеритель в соответствии со схемой, представленной на рисунке 2.

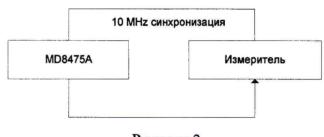


Рисунок 2

- 7.5.4 Подсоединить кабель к разъему RF Main блока MD8475A.
- 7.5.5 С помощью инструмента Maintenance Tool установить на тестере следующие параметры:
 - RF Unit: RF1.

Настройки разъема:

Output: Main.

Input: Main.

Настройки выхода:

Frequency: Use out of the band.

- Level: -10 дБм.

Настройки входа:

- Level: -60 дБм.
- 7.5.6 Определить максимальное значение КСВН в диапазоне частот от 500 МГц до 3 ГГц.
- 7.5.7 Повторить операции 4.6.3 4.6.6 для разъема RF Aux 1 и настроек разъема Output: Aux 1, Input Aux 1 соответственно.

Результаты поверки считать положительными, если значение КСВН на указанных выше частотах не превышает 1,5.

- 7.6 Определение диапазона и относительной погрешности установки уровня выхолного сигнала
 - 7.6.1 Соединить СИ в соответствии со схемой, представленной на рисунке 3.

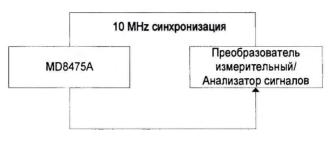


Рисунок 3

- 7.6.2 Выполнить калибровку преобразователя измерительного NRP-Z91.
- 7.6.3 Подключить измеритель мощности к разъему RF Main блока MD8475A.
- 7.6.4 С помощью Maintenance Tool установить на MD8475A следующие параметры:

RF Unit: RF1.

Настройки разъема:

Output: Main.

Настройки выхода:

Frequency: 350 MΓц.

Level: -10 дБм.

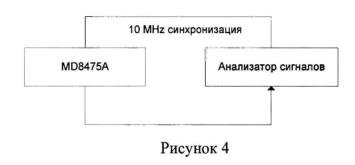
- 7.6.5 С помощью измерителя мощности выполнить измерение уровня выходного сигнала и зафиксировать полученное значение.
- 7.6.6 Повторить измерения уровня выходного сигнала для следующих частот: 1000, 2000, 3000, 3500, 3600 М Γ ц.
- 7.6.7 Устанавливая уровень выходного сигнала в соответствии с таблицей 4 повторить шаги 4.8.5 4.8.6. Для уровней сигнала менее минус 60 дБм измерения проводить с помощью анализатора сигналов, устанавливая центральную частоту анализатора в соответствии с пунктом 4.8.5 и полосу обзора 100 кГц, и использовать режим работы анализатора Peak Search.

Таблица 4 - Устанавливаемые уровни выходного сигнала

- 7.6.8 Повторить 4.8.6 для разъема RF Aux1.
- 7.6.9 Вычислить погрешность установки уровня выходного по формуле (2):

 $\Delta P = P_{\text{VCT}}[\text{дБм}] - P_{\text{изм}}[\text{дБм}],$

(2)


где Руст - установленное значение уровня выходного сигнала, дБм, Ризм — измеренное значение уровня выходного сигнала.

7.6.10 Результаты поверки считать положительными, если , если диапазон установки значений уровня выходного сигнала составляет от минус 120 до минус 10 дБм, и погрешность уровня выходного сигнала не превышает значений, указанных в таблице 5.

Таблица 5 - Пределы допускаемой погрешности установки уровня выходного сигнала

Пределы допускаемой погрешности установки уровня выходного сигнала, дБ		
для частот от 350 МГц до 3 ГГц	±1	
для частот от 3 ГГц до 3,6 ГГц	±1,2	

- 7.7 Определение уровня негармонических паразитных составляющих относительно уровня основного сигнала
- 7.7.1 Соединить испытуемый MD8475A и анализатор сигналов в соответствии со схемой, представленной на рисунке 4.

7.7.2 С помощью Maintenance Tool установить на MD8475A следующие параметры:

RF Unit: RF1.

Настройки разъема:

Output: Main.

Настройки выхода: Frequency: 350 МГц.

Level: -10 дБм.

- 7.7.3 Совместить опорный уровень с основной гармоникой. Установить на анализаторе режим дельта-маркера. Переместить маркер на негармоническую составляющую с максимальной амплитудой, смещенную более, чем на 100 кГц, и зафиксировать ее значение.
- 7.7.4 Повторить операции 4.9.3 4.9.4 для следующих значений частот: 600, 1000, 1500, 2000, 2500, 3000, 3500, 3600 МГц
- 7.7.5 Результаты поверки считать положительными, если уровень измеренных негармонических паразитных составляющих сигнала не превышает минус 40 дБ по отношению к несущей.
- 7.8 Определение уровня гармонических составляющих относительно уровня основного сигнала
- 7.8.1 Соединить испытуемый MD8475A и анализатор сигналов в соответствии со схемой, представленной на рисунке 5.

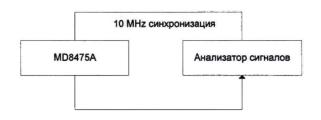


Рисунок 5

7.8.2 С помощью Maintenance Tool установить на MD8475A следующие параметры:

RF Unit: RF1.

Настройки разъема:

Output: Main.

Настройки выхода:

Frequency: 350 MΓц.

Level: -10 дБм.

- 7.8.3 Установить на анализаторе сигналов диапазон частот в 3,5 раза больше частоты основной гармоники, начиная с 0 Гц.
- 7.8.4 Измерить разность между уровнями основной, второй и третьей гармоник. Зафиксировать значения.
- 7.8.5 Повторить 7.8.2 7.8.4, устанавливая следующие значения частот: 600, 1000, 1500, 1800 МГц.
- 7.8.6 Результаты поверки считать положительными, если уровень гармонических составляющих сигнала не превышает минус 25 дБ по отношению к несущей.
- Определение среднеквадратического значения величины модуля вектора ошибки (EVM) и фазовой ошибки
- 7.9.1 Соединить испытуемый MD8475A и анализатор сигналов в соответствии со схемой, представленной на рисунке 6.

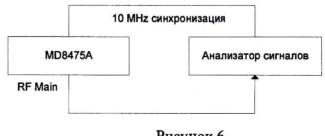


Рисунок 6

- 7.9.2 Запустить на тестере протоколов сигнализации программу MX847501A Control Software.
- 7.9.3 Для определения EVM для стандарта WCDMA нажать на кнопку SCENARIO и выбрать сценарий «C:\MX847501\Performance проведения испытаний: Test\WcdmaPerformance.dll>

- 7.9.4 Нажать кнопку SETUP для вывода меню настройки сигнала. Нажать кнопку Load и выбрать файл для загрузки параметров сигнала «C:\MX847501\Performance Test\WcdmaPerformance.pmex»
 - 7.9.5 Выбрать в параметрах выхода RF1.
- 7.9.6 Нажать на кнопку START для вывода сигнала. Нажимая кнопку ОК, устанавливать на выходе тестера сигнал с частотой 350, 2000 и 3600 МГц с заданными параметрами модуляции.
- 7.9.7 На анализаторе сигналов устанавливать последовательно центральную частоту в соответствии с частотой выходного сигнала тестера 350, 2000 и 3600 МГц. Запустить на анализаторе режим цифровой демодуляции сигналов. Выбрать предварительные настройки для стандарта WCDMA: Modulation Format QPSK, Symbol Rate 3,84 МГц, Span 5 МГц, Res BW 150.888 кГп
 - 7.9.8 Измерить и записать значение EVM.
 - 7.9.9 Остановить вывод сигнала на MD8475A.
- 7.9.10 Для определения величины фазовой ошибки для стандарта GSM нажать на кнопку SCENARIO и выбрать сценарий для проведения испытаний: «C:\MX847501\Performance Test \GsmPerformance.dll".»
- 7.9.11 Нажать кнопку SETUP для вывода меню настройки сигнала. Нажать кнопку Load и выбрать файл для загрузки параметров сигнала «C:\MX847501\Performance Test\GsmPerformance.pmex".»
 - 7.9.12 Выбрать в параметрах выхода RF1.
- 7.9.13 Нажать на кнопку START для вывода сигнала. Нажимая кнопку ОК, устанавливать на выходе тестера сигнал с частотой 350, 2000 и 3600 МГц с заданными параметрами модуляции.
- 7.9.14 На анализаторе сигналов устанавливать последовательно центральную частоту в соответствии с частотой выходного сигнала тестера 350, 2000 и 3600 МГц. Запустить на анализаторе режим цифровой демодуляции сигналов. Выбрать предварительные настройки для стандарта GSM: Modulation Format GMSK, Symbol Rate 270,833 кГц, Span 1 МГц, Res BW 5,81998 кГц
 - 7.9.15 Измерить и записать значение Phase Err.
 - 7.9.16 Остановить вывод сигнала на MD8475A.

Результаты поверки считать положительными, если среднеквадратическое значение величины модуля вектора ошибки (EVM) при воспроизведении сигнала стандарта WCDMA не превышает 3,5 %, а при воспроизведении сигнала стандарта GSM величина фазовой ошибки не превышает 1,5°.

8 Оформление результатов поверки

- 8.1 При положительных результатах поверки на MD8475A выдают свидетельство установленной формы. Знак поверки наносится на свидетельство о поверке.
- 8.2 В случае отрицательных результатов поверки применение MD8475A запрещается, на него выдается извещение о непригодности к применению с указанием причин непригодности.

Начальник лаборатории 160 НИО-1

ФГУП «ВНИИФТРИ»

А.В. Титаренко