ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПС 220 кВ Придонская

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПС 220 кВ Придонская (далее - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень - измерительно-информационные комплексы (ИИК), которые включают в себя трансформаторы тока (далее - ТТ) по ГОСТ 7746-2001, трансформаторы напряжения (далее - ТН) по ГОСТ 1983-2001 и счетчики активной и реактивной электроэнергии по ГОСТ Р 52323-2005 в режиме измерений активной электроэнергии и по ГОСТ Р 52425-2005 в режиме измерений реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных.

2-й уровень - измерительно-вычислительный комплекс электроустановки (ИВКЭ), включающий в себя устройство сбора и передачи данных ТК16L (далее - УСПД), каналообразующую аппаратуру, устройство синхронизации времени (далее - УСВ).

3-й уровень - информационно-вычислительный комплекс (ИВК) ПС 220 кВ Придонская, включающий в себя каналообразующую аппаратуру, сервер баз данных (БД) АИИС КУЭ, автоматизированные рабочие места персонала (АРМ) и программное обеспечение (далее - ПО) АИИС КУЭ ЕНЭС.

ИВК предназначен для автоматизированного сбора и хранения результатов измерений, состояния средств измерений, подготовки и отправки отчетов в АО «АТС», АО СО «ЕЭС».

Измерительные каналы (далее - ИК) состоят из трех уровней АИИС КУЭ.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на входы УСПД, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации, ее накопление и передача накопленных данных на верхний уровень системы, а также отображение информации по подключенным к УСПД устройствам.

На верхнем - третьем уровне системы выполняется дальнейшая обработка измерительной информации, в частности, формирование и хранение поступающей информации, оформление отчетных документов. Передача информации в заинтересованные организации осуществляется от сервера БД с помощью электронной почты по выделенному каналу связи по протоколу TCP/IP.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровень ИИК, ИВКЭ и ИВК. АИИС КУЭ оснащена устройством синхронизации времени на основе приемника сигналов точного времени от спутников глобальной системы позиционирования (GPS). Погрешность часов УСВ не более ± 1 с. УСВ обеспечивает автоматическую коррекцию часов сервера БД и УСПД. Коррекция часов УСПД проводится при расхождении часов УСПД и времени приемника более чем на ± 1 с, пределы допускаемой абсолютной погрешности синхронизации часов УСПД и времени приемника не более ± 1 с. Часы счетчиков синхронизируются от часов УСПД с периодичностью 1 раз в 30 минут, коррекция часов счетчиков проводится при расхождении часов счетчика и УСПД более чем на ± 2 с. Погрешность часов компонентов АИИС КУЭ не превышает ± 5 с/сут.

Журналы событий счетчика электроэнергии отражает: время (дата, часы, минуты, секунды) коррекции часов указанных устройств.

Журналы событий сервера БД и УСПД отражают: время (дата, часы, минуты, секунды) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Программное обеспечение

В АИИС КУЭ используется ПО АИИС КУЭ ЕНЭС версии 1.0, в состав которого входят модули, указанные в таблице 1. ПО АИИС КУЭ ЕНЭС обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО АИИС КУЭ ЕНЭС.

Таблица 1 - Метрологические значимые модули ПО

Идентификационные признаки	Значение
Идентификационное наименование ПО	СПО АИИС КУЭ ЕНЭС
Номер версии (идентификационный номер) ПО	1.00
Цифровой идентификатор ПО	289aa64f646cd3873804db5fbd653679
Алгоритм вычисления цифрового идентификатора ПО	MD5

СПО АИИС КУЭ ЕНЭС не влияет на метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 - Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики

Номер ИК	Наименование объекта		Измерительные компоненты				Метрологические характеристики ИК	
		TT	ТН	Счётчик	УСПД	Вид электро- энергии	Основная погрешность, %	Погрешность в рабочих условиях, %
1	2	3	4	5	6	7	8	9
	ПС 220 кВ Придонская							
1	ВЛ-110 кВ	TG 145N	НКФ-110-57У1	EPQS 114.23.27LL	TULCI	активная	±0,8	±1,6
1	Сергеевка 1	Кл. т. 0,2S 750/1	Кл. т. 0,5 110000:√3/100:√3	Кл. т. 0,2S/0,5	TK16L	реактив ная	±1,8	±2,8
2	ВЛ-110 кВ Сергеевка 2 ТG 145N Кл. т. 0,2S 750/1		НКФ-110-57У1 Кл. т. 0,5 110000:√3/100:√3	EPQS 114.23.27LL Кл. т. 0,2S/0,5	TK16L	активная	±0,8	±1,6
2		· · · · · · · · · · · · · · · · · · ·				реактив ная	±1,8	±2,8

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3. Погрешность в рабочих условиях указана для $\cos j = 0.8$ инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК № 1 2 от 0 до плюс 40 °C.
- 4. Допускается замена измерительных трансформаторов, счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2, УСПД на однотипный утвержденного типа. Допускается замена устройства синхронизации времени на однотипные утвержденного типа. Замена оформляется в установленном на объекте порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Основные технические характеристики ИК приведены в таблице 3.

Таблица 3 - Основные технические характеристики ИК

Таблица 3 - Основные технические характеристики ИК	
Наименование характеристики	Значение
Количество измерительных каналов	2
Нормальные условия:	
параметры сети:	
- напряжение, % от U _{ном}	от 98 до 102
- ток, % от I _{ном}	от 100 до 120
- частота, Гц	от 49,85 до 50,15
- коэффициент мощности cosj	0,9
- температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение, % от U _{ном}	от 90 до 110
- ток, % от I _{ном}	от 2 до 120
- коэффициент мощности	от 0,5 инд до 0,8 емк
- частота, Гц	от 49,6 до 50,4
- температура окружающей среды для ТТ и ТН, °С	от -40 до +70
- температура окружающей среды в месте расположения	
электросчетчиков, °С:	от -40 до +65
- температура окружающей среды в месте расположения	
сервера, °С	от +10 до +60
Надежность применяемых в АИИС КУЭ компонентов:	
Электросчетчики:	
- среднее время наработки на отказ, ч, не менее:	
для электросчетчика EPQS 114.23.27LL	70000
- среднее время восстановления работоспособности, ч УСПД:	2
- среднее время наработки на отказ не менее, ч	
для УСПД ТК16L	55000
- среднее время восстановления работоспособности, ч	2
Сервер:	
- среднее время наработки на отказ, ч	70000
- среднее время восстановления работоспособности, ч	1
Глубина хранения информации	
Электросчетчики:	
- тридцатиминутный профиль нагрузки в двух	114
направлениях, сутки, не менее	114
- при отключении питания, лет, не менее УСПД:	40
- суточные данные о тридцатиминутных приращениях	
электропотребления по каждому каналу и электропотребление за	
месяц по каждому каналу, суток, не менее	45
- сохранение информации при отключении питания, лет,	
не менее	10
Сервер:	
- хранение результатов измерений и информации состояний	2 -
средств измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера и УСПД с помощью источника бесперебойного питания;

- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал УСПД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и УСПД;
 - пропадание и восстановление связи со счетчиком;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - УСПД;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) ПС 220 кВ Придонская типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 - Комплектность АИИС КУЭ

Наименование	Обозначение	Рег №	Количество, шт.
Трансформатор тока	TG 145N	30489-09	6
Трансформатор напряжения	НКФ-110-57У1	922-54	2
Счётчик электрической			
энергии	EPQS 114.23.27LL	25971-06	2
многофункциональный			

Наименование	Обозначение	Рег №	Количество, шт.
Устройство сбора и передачи данных	TK16L	36643-07	2
Устройство синхронизации времени	УССВ-2	54074-13	1
Программное обеспечение	АИИС КУЭ ЕНЭС	-	1
Методика поверки	МП 206.1-299-2017	-	1
Паспорт-Формуляр	АИИС.001.КАПШИН	-	1

Поверка

осуществляется по документу МП 206.1-299-2017 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) ПС 220 кВ Придонская. Измерительные каналы. Методика поверки», утвержденному ФГУП «ВНИИМС» 23 октября 2017 г.

Основные средства поверки:

- трансформаторов тока в соответствии с ГОСТ $8.217-2003 \ \mbox{«}\Gamma \mbox{СИ.}$ Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки» и/или МИ 2925-2005 «Измерительные трансформаторы напряжения $35...330/\sqrt{3}$ кВ. Методика поверки на месте эксплуатации с помощью эталонного делителя»;
- по МИ 3195-2009. «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений без отключения цепей»;
- по МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений без отключения цепей»;
- счетчиков EPQS 114.23.27LL по документу PM 1039597-26:2002 «Счетчики электрической энергии многофункциональные EPQS», согласованному с Государственной службой метрологии Литовской Республики;
- УСПД ТК16L по документу «Устройство сбора и передачи данных ТК16L для автоматизации измерений и учета энергоресурсов. Методика поверки» АВБЛ.468212.041 МП», согласованному с ГЦИ СИ ФГУП «ВНИИМС» в мае 2007 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), Per. № 27008-04;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до плюс 60° C, дискретность 0.1° C; диапазон измерений относительной влажности от 10 до 100%, дискретность 0.1%.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих - кодом и (или) оттиском клейма поверителя.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПС 220 кВ Придонская, аттестованной ФГУП «ВНИИМС», аттестат об аккредитации № RA.RU.311787 от 02.08.2016 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПС 220 кВ Придонская

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «Капшин» (ООО «Капшин»)

ИНН 7701833109

Юридический адрес: 115114, г. Москва, Дербеневская улица, дом 20 строение 26, этаж 4, комната 9.9

Адрес: 115114, г. Москва, Дербеневская улица, дом 20 строение 26, этаж 4, комната 9.9

Телефон: (962) 941-30-44

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д. 46 Телефон/факс: (495) 437-55-77 / (495) 437-56-66

E-mail: <u>office@vniims.ru</u> Web-сайт: www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа N 30004-13 от 26.07.2013 г.

Заместитель			
Руководителя Федерального			
агентства по техническому			
регулированию и метрологии			С.С. Голубев
	Мп	// \	2017