УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «5» октября 2021 г. № 2180

Лист № 1 3353-21 Всего листов 12

Регистрационный № 83353-21

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Измерители электрической энергии многоканальные «МИРТЕК-134-РУ»

Назначение средства измерений

Измерители электрической энергии многоканальные «МИРТЕК-134-РУ» (далее – измерители) предназначены для измерений активной и реактивной электрической энергии прямого и обратного (или только прямого) направления по дифференцированным во времени тарифам в трехфазных сетях переменного тока промышленной частоты.

Измерители предназначены для применения на объектах с большой концентрацией потребителей.

Описание средства измерений

Принцип действия измерителей основан на аналого-цифровом преобразовании сигналов тока и напряжения в показания электрической энергии.

Измерители могут применяться как автономно, так и в составе автоматизированных информационно-измерительных систем коммерческого учета (АИИС КУЭ) и технического учета электроэнергии, диспетчерского управления (АСДУ).

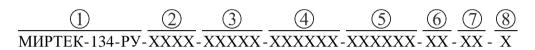
Измерители имеют модульную конструкцию и состоят из модуля вычислителя и до 32 (в зависимости от числа используемых измерительных каналов) модулей первичных преобразователей, подключаемых к модулю вычислителя по интерфейсу. В состав измерителей могут входить модули питания, дополнительных интерфейсов и дискретных входов/выходов.

В качестве первичных преобразователей измерителей используются счетчики электрической энергии трехфазные многофункциональные «МИРТЕК-133-РУ», являющиеся средством измерений утвержденного типа, описание которых приведено в описании типа средства измерений.

Вычислитель измерителей конструктивно состоит из корпуса и клеммной крышки. В корпусе расположены печатные платы, клеммы питания и интерфейсов. Клеммная крышка при опломбировании предотвращает доступ к клеммникам.

Вычислитель измерителей имеет в своем составе микроконтроллер, энергонезависимую память данных, встроенные часы, позволяющие вести учет электрической энергии по тарифным зонам суток, выполненные по ГОСТ IEC 61038-2011, интерфейс для подключения измерителей, дисплей, светодиодные индикаторы, кнопки для ручного переключения режимов индикации.

Вычислитель измерителей может иметь в своем составе оптический порт, выполненный по Γ OCT IEC 61107-2011.


В состав вычислителя измерителей могут входить один или несколько дополнительных интерфейсов удаленного доступа.

В состав вычислителя измерителей могут входить один или несколько отдельных гальванически развязанных от сети дискретных выходов и один или несколько отдельных гальванически развязанных от сети дискретных входов.

Вычислитель измерителей производит периодическое считывание в цифровом виде измеренных значений параметров из регистров каждого первичного преобразователя. Считанные данные используются для дальнейших измерений по каждому из каналов, таких, как количество электрической энергии в соответствии с тарифным расписанием, профилей мощности, параметров качества электрической энергии (в зависимости от исполнения) и других. Вычислитель измерителей также осуществляет ведение журнала событий измерителя и первичных преобразователей, обмен информацией с внешними устройствами, выполняет функцию внешнего индикаторного устройства для первичных преобразователей.

Структура обозначения возможных исполнений измерителей приведена ниже.

Структура условного обозначения

- ① Тип измерителей
- (2) Корпусное исполнение

D33.1 –для установки на DIN-рейку

D36 – для установки на DIN-рейку

(3) Класс точности

A0.5R1 – класс точности 0,5S по ГОСТ 31819.22 и класс точности 1 по ГОСТ 31819.23

(4) Основной интерфейс

CAN – интерфейс CAN

RS485 – интерфейс RS-485

RF433/n – радиоинтерфейс 433 МГц, где n – номер модификации модуля интерфейса

RF868/n – радиоинтерфейс 868 МГц, где n – номер модификации модуля интерфейса

RF2400/n – радиоинтерфейс 2400 МГц, где n – номер модификации модуля интерфейса

E/n – интерфейс Ethernet, где n – номер модификации модуля интерфейса

(5) Дополнительные интерфейсы

CAN – интерфейс CAN

RS232 – интерфейс RS-232

RS485 – интерфейс RS-485

RF433/n – радиоинтерфейс 433 МГц, где n – номер модификации модуля интерфейса

RF868/n – радиоинтерфейс 868 МГц, где n – номер модификации модуля интерфейса

RF2400/n – радиоинтерфейс 2400 МГц, где n – номер модификации модуля интерфейса

PF/n – PLC-модем с FSK-модуляцией, где n – номер модификации модуля интерфейса

PO/n – PLC-модем с OFDM-модуляцией, где n – номер модификации модуля интерфейса

G/n – радиоинтерфейс GSM/GPRS, где n – номер модификации модуля интерфейса

E/n – интерфейс Ethernet, где n – номер модификации модуля интерфейса

RFWF – радиоинтерфейс WiFi

RFLT – радиоинтерфейс LTE

(Нет символа) – интерфейс отсутствует

(6) Поддерживаемые протоколы передачи данных

(Нет символа) – протокол «МИРТЕК»

Р1 – протокол DLMS/COSEM/СПОДЭС

Р2 – протоколы «МИРТЕК» и DLMS/COSEM/СПОДЭС

- (7) Дополнительные функции
 - Hn датчик магнитного поля, где n может принимать значения:
 - 1 датчик магнитного поля в вычислителе
 - 2 датчик магнитного поля в измерителях
 - 3 датчик магнитного поля в вычислителе и измерителях
 - 4 датчик магнитного поля во всех модулях
 - Ik дискретный вход, где k количество входов
 - L подсветка индикатора вычислителя
 - М измерение параметров качества электрической энергии
 - О оптопорт
 - Qk/n дискретный выход, где k количество выходов, n номер модификации
 - Rn защита от выкручивания винтов кожуха, где n номер модификации защиты
 - U защита целостности корпуса
 - Vn электронная пломба, где n может принимать значения:
 - 1 электронные пломбы только в вычислителе
 - 2 электронные пломбы в вычислителе и на корпусе первичных преобразователей
 - 3 электронные пломбы в вычислителе и на крышке зажимов первичных преобразователей
 - 4 электронные пломбы в вычислителе, на корпусе и крышке зажимов первичных преобразователей
 - 5 электронные пломбы во всех модулях измерителей
 - Ү защита от замены деталей корпуса
 - Zn модификация источника питания измерителей, где n номер модификации
 - (Нет символа) дополнительные функции отсутствуют
- (8) Количество направлений учета электроэнергии
 - (Нет символа) измерение электроэнергии в одном направлении (по модулю)
 - D измерение электроэнергии в двух направлениях

Перечни номеров, обозначающих модификации модулей интерфейсов и дополнительных функций, могут быть расширены производителем. Описание модификаций модулей интерфейсов и дополнительных функций приведено в эксплуатационной документации и на сайте производителя. Дополнительные номера модификаций модулей интерфейсов и дополнительных функций могут быть введены только для функциональности, не влияющей на метрологические характеристики измерителей.

Измерители ведут учет электрической энергии по действующим тарифам в соответствии с месячными программами смены тарифных зон (количество месячных программ — до 12, количество тарифных зон в сутках — до 48). Месячная программа может содержать суточные графики тарификации рабочих, субботних, воскресных и специальных дней. Количество специальных дней (праздничные и перенесенные дни) — до 45. Для специальных дней могут быть заданы признаки рабочей, субботней, воскресной или специальной тарифной программы. Измерители содержат в энергонезависимой памяти две тарифные программы — действующую и резервную. Резервная тарифная программа вводится в действие с определенной даты, которая передается отдельной командой по интерфейсу.

Измерители обеспечивают учет (до 32 каналов):

- текущего времени и даты;
- количества электрической энергии нарастающим итогом суммарно независимо от тарифного расписания;

- количества электрической энергии нарастающим итогом суммарно и раздельно по действующим тарифам;
- количества электрической энергии нарастающим итогом суммарно и раздельно по действующим тарифам на начало месяца;
- количества электрической энергии нарастающим итогом суммарно и раздельно по действующим тарифам на начало суток;
- профиля мощности, усредненной на интервале 30 минут (или настраиваемом из ряда: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 минут);
- количества электрической энергии нарастающим итогом суммарно и раздельно по действующим тарифам на начало интервала 30 или 60 минут (только при установленном интервале усреднения мощности 30 или 60 минут);
- количества электрической энергии, потребленной за интервал 30 минут (только при установленном интервале усреднения мощности 30 минут).

Учет электрической энергии измерителями производится по модулю, независимо от направления или с учетом направления (измерители с символом «D» в условном обозначении).

Измерители, у которых в условном обозначении присутствует символ «М», дополнительно обеспечивают измерение следующих параметров:

- среднеквадратичных значений фазных напряжений (по ГОСТ 30804.4.30-2013, класс S);
- положительного и отрицательного отклонения напряжения (по ГОСТ 32144-2013, ГОСТ 30804.4.30-2013, класс S);
 - среднеквадратичных значений фазных токов;
- среднеквадратичного значения тока нейтрали (только измерители с символом «N» в условном обозначении);
 - частоты сети (по ГОСТ 30804.4.30-2013, класс S);
 - отклонения частоты (по ГОСТ 32144-2013, ГОСТ 30804.4.30-2013, класс S);
 - активной мощности по каждой фазе;
 - реактивной мощности по каждой фазе;
 - полной мощности по каждой фазе;
 - коэффициентов мощности по каждой фазе;
- длительности провала напряжения (по ГОСТ 32144-2013, ГОСТ 30804.4.30-2013, класс S);
- длительности перенапряжения (по ГОСТ 32144-2013, ГОСТ 30804.4.30-2013, класс S);
- длительности прерывания напряжения (по ГОСТ 32144-2013, ГОСТ 30804.4.30-2013, класс S, для измерительных каналов, измеритель и первичные преобразователи которых питаются от внешнего источника электропитания, не зависимого от сети, в которой проводятся измерения, или измеритель и первичные преобразователи которых подключены к источнику резервного электропитания);
 - остаточного напряжения (по ГОСТ 32144-2013, ГОСТ 30804.4.30-2013, класс S);
- максимального значения перенапряжения (по ГОСТ 32144-2013, ГОСТ 30804.4.30-2013, класс S).

Измерители обеспечивают возможность задания по интерфейсу следующих параметров:

- адреса измерителя (от 1 до 65000);
- заводского номера измерителя (до 30 символов);
- текущего времени и даты;
- величины суточной коррекции хода часов;
- разрешения перехода на летнее/зимнее время (переход на летнее время осуществляется в 2:00 в последнее воскресенье марта, переход на зимнее время осуществляется в 3:00 в последнее воскресенье октября);
 - 48 зон суточного графика тарификации для каждого типа дня для 12 месяцев;
- до 45 специальных дней (дни, в которые тарификация отличается от общего правила);
 - пароля для доступа по интерфейсу (от 0 до 4294967295).

Измерители обеспечивают для каждого из каналов фиксацию в журналах событий перезагрузок, самодиагностики, попыток несанкционированного доступа, переходов на летнее или зимнее время, изменения конфигурации, изменения данных, изменения времени и даты, включений или отключений питания, наличия фазного тока при отсутствии напряжения, изменения направления тока в фазных цепях, воздействия сверхнормативного магнитного поля, выходов параметров качества электрической энергии за заданные пределы, значений положительного и отрицательного отклонений напряжения, аварийных ситуаций.

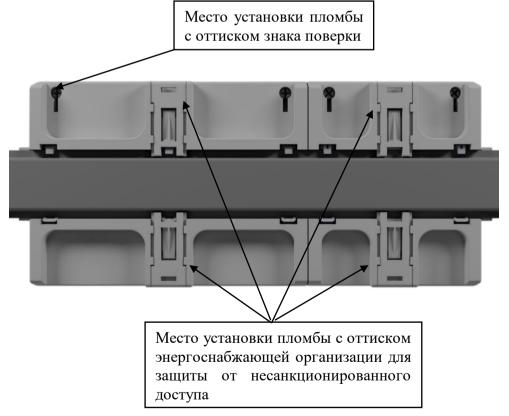
Обмен информацией с внешними устройствами обработки данных осуществляется по имеющемся дополнительным интерфейсам, в зависимости от исполнения.

Обслуживание измерителей производится с помощью технологического программного обеспечения.

Измерители имеют степень защиты от пыли и влаги IP51 по ГОСТ 14254-2015.

Знак поверки наносится на измерители.

Заводской номер, идентифицирующий каждый экземпляр средства измерений, наносится в паспорт измерителя, на лицевую панель измерителя наносится заводской номер составной части измерителя.


Общий вид средства измерений, места нанесения знака поверки и схемы пломбировки от несанкционированного доступа, приведены на рисунках 1.

Общий вид первичных преобразователей и схемы их пломбировки приведены в описании типа на счетчики электрической энергии трехфазные многофункциональные «МИРТЕК-133-РУ».

Место установки пломбы с оттиском энергоснабжающей организации для защиты от несанкционированного доступа

а) вид спереди

б) вид сзади

Рисунок 1 — Общий вид измерителя с внешним модулем питания в корпусном исполнении D36

Рисунок 2 – Общий вид измерителя в корпусном исполнении D33.1

Программное обеспечение

По своей структуре ПО разделено на метрологически значимую и метрологически незначимую части, имеет контрольную сумму метрологически значимой части и записывается в вычислитель измерителя на стадии его производства.

Идентификационные данные программного обеспечения приведены в таблице 1.

Влияние программного продукта на точность показаний измерителей находится в границах, обеспечивающих метрологические характеристики, указанные в таблицах с 2 по 6. Диапазон представления, длительность хранения и дискретность результатов измерений соответствуют нормированной точности измерителей.

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений – «высокий» в соответствии с Р 50.2.077-2014.

Таблица 1 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	MF4	MF5
Номер версии (идентификационный номер) ПО	не ниже 1.0	не ниже 1.0
Цифровой идентификатор ПО	83D1	2214
Алгоритм вычисления цифрового идентификатора программного обеспечения	CRC	CRC

Метрологические и технические характеристики

Классы точности по ГОСТ 31818.11-2012, ГОСТ 31819.22-2012, ГОСТ 31819.23-2012 для каждого канала измерителей указаны в таблице 2.

Таблица 2 – Классы точности каналов измерителей

Символы в условном обозначении	Класс точности при измерении энергии	
символы в условном обозначении	активной	реактивной
A0.5R1	0,5S	1

Максимальные значения стартовых токов для каждого канала измерителей в зависимости от класса точности и типа включения приведены в таблице 3.

Таблица 3 – Максимальные значения стартовых токов каналов измерителей

T	Класс	точности
Тип включения	0,5S	1
первичных преобразователей	ГОСТ	ГОСТ
* *	31819.22-	31819.23-
измерителей	2012	2012
Непосредственное	$0{,}001~I_{\it 6}$	$0,0025~I_{ ilde{o}}$
Через трансформаторы тока	$0{,}001~I_{\scriptscriptstyle HOM}$	$0,\!002~I_{{\scriptscriptstyle HOM}}$

Пределы допускаемой погрешности при измерении напряжения, положительного и отрицательного отклонения напряжения, тока, частоты, отклонения частоты, мощности, коэффициента мощности (для измерителей с символом «М» в условном обозначении) указаны в таблице 4.

Таблица 4 – Пределы допускаемой погрешности каналов измерителей при измерении параметров электрической энергии

Параметр	Пределы погрешности измерений
Частота, Гц	±0,01
Отклонение частоты, Гц	±0,01
Активная мощность, %	±0,5
Реактивная мощность, %	±0,5
Полная мощность, %	±0,5
Положительное отклонение напряжения, %	±0,4
Отрицательное отклонение напряжения, %	±0,4
Напряжение, %	±0,4
Фазный ток, %	±0,5
Ток нейтрали, %	±0,5
Коэффициент мощности, %	±0,5

Таблица 5 – Метрологические характеристики

Tuomique of the position recent exaparte phenium	<u></u>	
Наименование характеристики	Значение	
Номинальное фазное напряжение измерительных	57,7; 230	
каналов $U_{\scriptscriptstyle HOM}$, В	31,1, 230	
Базовый (номинальный) ток измерительных кана-	5	
лов I_{δ} ($I_{\text{ном}}$), A	3	
Максимальный ток измерительных каналов $I_{\text{макс}}$, А	10; 50; 60; 80; 100	
Диапазон входных сигналов измерительных кана-		
лов:		
- сила тока	от $0.05I_{\it 6}~(0.01I_{\it HOM}$ или $0.02I_{\it HOM})$ до $I_{\it MAKC}$	
- напряжение	(от 0,75 до 1,2) $U_{\scriptscriptstyle HOM}$	
	или (от 0,2 до 1,2) $U_{{\scriptscriptstyle HOM}}^{-1,(2)}$	
- коэффициент мощности	от 0,8 (емкостная) до 1,0	
	от 1,0 до 0,5 (индуктивная)	
Рабочий диапазон изменения частоты измеритель-	50.75	
ной сети, Гц	50±7,5	
Пределы основной абсолютной погрешности часов	.0.7	
за интервал времени 1 сут, с	±0,5	
Пределы основной абсолютной погрешности часов		
за интервал времени 1 сут при отключенном	±1	
питании, с		
Пределы дополнительной температурной	$\pm 0,15$ но суммарно не более, чем 4 с в	
погрешности часов измерителя за интервал	-	
времени 1 сут, на каждый градус Цельсия, с	диапазоне рабочих температур	

¹⁾ Для измерительных каналов, вычислитель и первичные преобразователи которых питаются от внешнего источника электропитания, не зависимого от сети, в которой проводятся измерения, или вычислитель и первичные преобразователи которых подключены к источнику резервного электропитания.

Таблица 6 – Основные технические характеристики

Наименование характеристики	Значение	
Количество десятичных знаков отсчетного устрой-	8	
ства вычислителя, не менее		
Номинальное фазное напряжение питания составных		
частей измерителей с внутренним источником элек-		
тропитания или модуля питания составных частей	57,7; 230	
измерителей с внешним источником электропитания		
U_n , B		
Рабочий диапазон напряжения питания при питании	(om 0.75 vo 1.2) II	
от сети переменного тока	(от 0,75 до 1,2) U_n	
Номинальное напряжение питания постоянного тока		
составных частей измерителей с внешним источни-	24	
ком электропитания (выходное напряжение модуля	24	
питания составных частей измерителей), В		

²⁾ Для параметров, измеряемых по ГОСТ 30804.4.30-2013, класс S.

Продолжение таблицы 6

Наименование характеристики	Значение
Рабочий диапазон напряжения питания составных	
частей измерителей с внешним источником электро-	24±5%
питания, В	
Полная (активная) мощность, потребляемая каждой	
цепью напряжения, при номинальном значении	
напряжения, нормальной температуре и номинальной	
частоте, В А (Вт), не более:	
- для первичных преобразователей и вычислителя с	10 (2)
внутренним источником электропитания	
- для первичных преобразователей с внешним источ-	0,5
ником электропитания	
- для внешнего источника электропитания из расчета	10
на каждый питаемый от него модуль измерителя	
Полная мощность, потребляемая каждой цепью тока	
при базовом (номинальном) токе, нормальной темпе-	0,3
ратуре и номинальной частоте, В А, не более	
Длительность хранения информации при отключении	30
питания вычислителя, лет, не менее	30
Срок службы батареи вычислителя, лет, не менее	16
Число тарифов, не менее	4
Число временных зон, не менее	12
Глубина хранения значений электрической энергии	36
на начало месяца, мес, не менее:	30
Глубина хранения значений электрической энергии	128
на начало суток, сут, не менее:	120
Глубина хранения значений электрической энергии	128
на начало интервала 30 мин, сут, не менее:	120
Глубина хранения значений электрической энергии,	128
потребленной за интервал 30 мин, сут, не менее:	120
Интервал усреднения мощности для фиксации про-	30
филя нагрузки, мин ¹⁾	50
Глубина хранения профиля нагрузки при интервале	128
усреднения 30 мин, сут ²⁾ , не менее:	
Количество записей в журнале событий, не менее:	1000
Габаритные размеры вычислителя ³⁾	
(длина×ширина×высота), мм, не более	10.7 10.5
- корпус D33.1	135×126×72
- корпус D36, модуль вычислителя	115×160×60
- корпус D36, модуль питания	115×105×60
Условия эксплуатации измерителей:	
- температура окружающей среды, °С	от –40 до +70
- относительная влажность, %	от 30 до 98
- атмосферное давление, кПа	от 70 до 106,7

Продолжение таблицы 6

Наименование характеристики	Значение
Масса вычислителя, кг, не более	1,5
Срок службы измерителей, лет, не менее	30
Средняя наработка на отказ, ч, не менее	220000

¹⁾ По требованию заказчика возможна реализация настраиваемого интервала усреднения мощности из ряда: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 мин.

Знак утверждения типа

наносится на вычислитель измерителя офсетной печатью (или другим способом, не ухудшающим качества), на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

Таблица 7 – Комплектность средства измерений

Наименование	Обозначение	Количе- ство	Примечание
Измеритель электрической энергии многоканальный «МИРТЕК-134-РУ»	«МИРТЕК-134-РУ»	1 шт.	Исполнение и ком- плектность в соответ- ствии с заказом и экс- плуатационной доку- ментацией
Руководство по эксплуатации	МИРТ.411152.144РЭ	1 шт.	В электронном виде
Паспорт	МИРТ.411152.144ПС	1 шт.	В бумажном виде
Методика поверки	РТ-МП-569-551-2021	1 шт.	В электронном виде по отдельному заказу
Упаковка	_	1 шт.	Групповая потребительская тара
Технологическое программ- ное обеспечение	_	1 шт.	В электронном виде по отдельному заказу

Примечание — Последние версии технологического программного обеспечения и документации размещены на официальном сайте www.mirtekgroup.ru и свободно доступны для загрузки.

²⁾ Минимальная глубина хранения профиля нагрузки при других значениях интервала усреднения может быть рассчитана по формуле $D_{_{Muh}} = \frac{I_{_{mek}}}{30} \cdot D_{30}$, где I_{mek} — текущий интервал усреднения мощности, мин; D_{30} — глубина хранения профиля нагрузки при интервале усреднения 30 мин, сут.

³⁾ Габаритные размеры и масса первичных преобразователей измерителей приведены в описании типа на счетчики электрической энергии трехфазные многофункциональные «МИРТЕК-133-РУ».

Сведения о методиках (методах) измерений

приведены в разделе 3 «Подготовка и порядок работы» руководства по эксплуатации МИРТ.411152.144РЭ.

Нормативные и технические документы, устанавливающие требования к измерителям электрической энергии многоканальным «МИРТЕК-134-РУ»

ГОСТ 31818.11-2012 «Аппаратура для измерения электрической энергии переменного тока. Общие требования. Испытания и условия испытаний. Часть 11. Счетчики электрической энергии».

ГОСТ 31819.22-2012 «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0.2S и 0.5S».

ГОСТ 31819.23-2012 «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии».

МИРТ.411152.144ТУ Измерители электрической энергии многоканальные «МИРТЕК-134-РУ». Технические условия».

Изготовитель

Общество с ограниченной ответственностью «МИРТЕК»

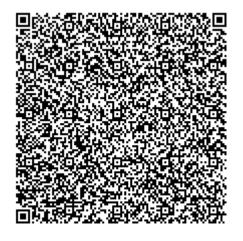
ООО «МИРТЕК» ИНН 6154125635

Адрес: 347927, Ростовская область, г. Таганрог, Поляковское Шоссе, 15-к

Телефон/факс: 8 (8634) 34-33-33 E-mail: info@mirtekgroup.ru Beб-сайт: www.mirtekgroup.ru

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве и Московской области»


(ФБУ «Ростест-Москва»)

Адрес: 117418, г. Москва, Нахимовский проспект, д. 31

Телефон: +7 (495) 544-00-00 Факс: +7 (495) 546-45-01 E-mail: info@rostest.ru Веб-сайт: www.rostest.ru

Уникальный номер записи об аккредитации RA.RU.310639 в Реестре аккредитованных

ЛИЦ

