УТВЕРЖДАЮ

Руководитель ГЦИ СИ АО «НИЦПВ»

_ В.Д. Войтко

2016 г.

инструкция

ПРЕОБРАЗОВАТЕЛИ АКУСТИЧЕСКОЙ ЭМИССИИ SNK-15

МЕТОДИКА ПОВЕРКИ

СНК.433649.001 МП

ВВЕДЕНИЕ

Настоящая методика распространяется на преобразователи акустической эмиссии SNK-15 (далее - преобразователи SNK-15) и устанавливает методы и средства их первичной и периодической поверок.

Настоящая методика разработана в соответствии с РМГ 51-2002 «Документы на методики поверки средств измерений. Основные положения».

При ознакомлении с методикой поверки необходимо дополнительно руководствоваться эксплуатационной документацией на преобразователи SNK-15, эталоны и средства измерений, применяемые при поверке преобразователей SNK-15.

Интервал между поверками - 1 год.

1 ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки выполняются операции, указанные в таблице 1.1. Таблипа 1.1.

	140/11IQ# 1.11			
No	Наименование	Номер	Проведение операции	
п/п	операции	пункта	при поверке	
		методики	первичной	периодической
1	Внешний осмотр и проверка комплектности	5.1	да	да
2	Опробование	5.2	да	да
3	Определение метрологических характеристик:	5.3	да	да
3.1	Определение коэффициента и погрешности электроакустического преобразования в диапазоне рабочих частот	5.3.1	да	да
3.2	Определение неравномерности амплитудно- частотной характеристики	5.3.2	да	да

2 СРЕДСТВА ПОВЕРКИ

2.1 При проведении поверки должны применяться средства поверки, указанные в таблице 2.1.

Таблица 2.1.

Номер пунк-	Наименование и тип (условное обозначение) основного или вспомогатель-	
та документа	ного средства поверки; обозначение нормативного документа, регламенти-	
по поверке	рующего технические требования, и (или) метрологические и основные	
	технические характеристики средства поверки	
521 522	Система лазерная измерительная ЛИС-01М (Госреестр № 42622-09)	
3.3.1 – 3.3.2	Система лазерная измерительная ЛИС-01М (Госреестр № 42622-09) Осциллограф цифровой TDS-2014В (Госреестр № 19736-11)	

Примечания:

- 1 Вместо указанных в таблице средств поверки разрешается применять другие аналогичные средства измерений с метрологическими характеристиками, удовлетворяющими предъявленным к ним требованиям при поверке преобразователей SNK-15.
- 2 Применяемые средства поверки должны быть исправны, поверены и иметь свидетельства (отметки в формулярах или паспортах) о поверке

3 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

3.1 При проведении поверки должны быть соблюдены требования безопасности, предусмотренные ПОТ Р M-016-2001 «Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок», а также изложенные в руководстве

по эксплуатации преобразователей SNK-15, в технической документации на применяемые при поверке средства измерений и вспомогательное оборудование.

4 УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ

4.1 При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха, °С

 20 ± 5 ;

- относительная влажность окружающего воздуха, %

не более 80:

- атмосферное давление, кПа (мм рт. ст.)

 $100 \pm 4 (750 \pm 30);$

- напряжение питающей сети переменного тока частотой (50 \pm 1) Γ ц, B

 220 ± 22

4.2 Подготовка к работе и порядок работы преобразователей SNK-15 должны соответствовать документу «Преобразователи акустической эмиссии SNK-15. CHK.433649.001 РЭ». При этом устанавливаются требуемые режимы, измеряемые параметры и единицы измерений.

Определение метрологических характеристик преобразователей SNK-15 проводят после достижения установившегося режима, задаваемого с помощью средств испытаний - рабочих эталонов, испытательного оборудования и вспомогательной аппаратуры. Контроль достижения установившегося режима осуществляется в соответствии с НТД на средства испытаний. Отсчет результатов измерений по преобразователю SNK-15 должен осуществляться не ранее, чем через 5 минут после выхода испытательного оборудования на заданный режим.

- 4.3 К проведению поверки допускаются лица:
- прошедшие обучение и имеющие соответствующую профессиональную подготовку (аттестованных в соответствии с ПР 50.2.012-94 «ГСИ. Порядок аттестации поверителей средств измерений»);
- изучившие руководство по эксплуатации поверяемого преобразователя SNK-15 и методику его поверки.

5 ПРОВЕДЕНИЕ ПОВЕРКИ

- 5.1 Внешний осмотр и проверка комплектности
- 5.1.1 При проведении внешнего осмотра и проверке комплектности должно быть установлено соответствие преобразователей SNK-15 следующим требованиям:
 - наличие товарного знака изготовителя, порядковый номер, год изготовления;
- наружная поверхность не должна иметь следов механических повреждений, которые могут влиять на работу преобразователей SNK-15;
 - чистота и целостность разъемов;
 - соединительные провода должны быть исправными;
- комплектность преобразователей SNK-15 должна соответствовать комплектности, указанной в документации (СНК.433649.001 РЭ и СНК.433649.001 ПС).
- 5.1.2 Результаты внешнего осмотра и проверку комплектности преобразователя SNK-15 считать положительными, если выполняются все выше перечисленные требования.
 - 5.2 Опробование
- 5.2.1 При определении работоспособности преобразователей SNK-15 необходимо выполнить следующие операции:
 - а) подготовить преобразователь SNK-15 к работе соответственно требованиям РЭ;
 - б) установить преобразователь SNK-15 в ЛИС-01М.
- 5.2.2 Результаты поверки считать положительными и преобразователь SNK-15 допускается к дальнейшей поверке, если наблюдается устойчивый сигнал с преобразователя SNK-15 на экране осциллографа.

5.3 Определение метрологических характеристик

5.3.1 Определение коэффициента и погрешности электроакустического преобразования в диапазоне рабочих частот

Определение коэффициента и погрешности электроакустического преобразования в диапазоне рабочих частот осуществляется методом прямых измерений с использованием системы лазерной измерительной ЛИС-01М и осциллографа TDS-2014B.

Порядок выполнения:

- 5.3.1.1 Преобразователь SNK-15 устанавливается в ЛИС-01М (рисунок 5.3.1) в соответствии с указаниями эксплуатационной документации на ЛИС-01М.
- 5.3.1.2 Определение К_{пр} и относительной погрешности преобразования преобразователя SNK-15 в диапазоне рабочих частот проводится в следующей последовательности:
- а) задается перемещение S (м) рабочей поверхности вибростола ЛИС-01М и измеряется осциллографом выходной сигнал с преобразователя SNK-15 $U_{\text{вых}}$ (B);
- б) измерения проводятся в частотном диапазоне от 30 до 150 к Γ ц с максимальным шагом 10 к Γ ц. В каждой точке частотного диапазона проводятся не менее 5 измерений с дальнейшим усреднением результатов;
 - в) интервал между сериями измерений не менее 5 мин;

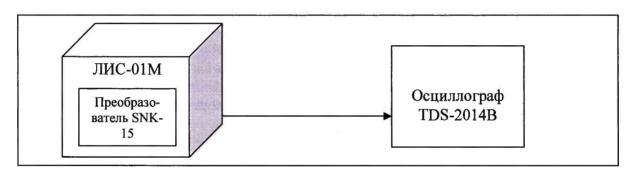


Рисунок 5.3.1

- г) проводится усреднение по всем полученным данным измерений для каждой частоты (f), в результате получают усредненную амплитудно-частотную характеристику (AЧX) $K_{nn}(f)$ преобразователя SNK-15;
 - д) вычисляется коэффициент преобразования SNK-15 по формуле:

$$K_{\text{fin}}(f_{\text{n}}) [B/M] = U_{\text{BMX}}(B) / S(M),$$

- где $K_{np}(f_p)$ коэффициент преобразования SNK-150 на рабочей (резонансной) частоте f_p . Коэффициент преобразования в децибелах определяется выражением $K_{np}(f_p)$ [дБ] = 20 $\lg K_{np}(f_p)$ [В/м];
- е) пределы допускаемой относительной погрешности преобразования SNK-15 определяются по формуле:

$$\delta K_{np} = (K_{np}(f_p) - K_{np}(f_p)_{nacn}) / K_{np}(f_p) \cdot 100 \%,$$

где $K_{np}(f_p)_{nacn}$ — значение коэффициента преобразования, указанное в паспорте на SNK-15.

5.3.1.3 Результаты измерений и расчетов сводятся в таблицу 5.3.1.

Таблица 5.3.1

Частота, кГц			Значение коэффициента $K_{np}(f_p)$		Значение погрешности, %		
	$U_{\text{вых}}, B$	Ѕ, м	В/м	дБ	по НТД, В/м (дБ)	полученное	по НТД
30					$200 \cdot 10^6 (50)$		± 25
					200·10 ⁶ (50)		± 25
150					$200 \cdot 10^6 (50)$		± 25

5.3.1.4 Результаты поверки считать положительными, если значение коэффициента электроакустического преобразования во всем диапазоне рабочих частот составляет

 $200 \cdot 10^6$ В/м, а значение относительной погрешности коэффициента электроакустического преобразования находится в пределах, указанных в таблице 5.3.1.

5.3.2 Определение неравномерности амплитудно-частотной характеристики

Определение неравномерности АЧХ проводится методом прямых измерений с использованием системы лазерной измерительной ЛИС-01М и осциллографа TDS-2014B.

- 5.3.2.1 Значение неравномерности АЧХ преобразователя SNK-15 определяется по формуле $N_{AYX} [дБ] = \pm \frac{1}{2} \cdot 20 \cdot \lg (K_{IID}(f)_{max} / K_{IID}(f)_{min}).$
 - 5.3.2.2 Результаты измерений и расчетов сводятся в таблицу 5.3.2.

Таблица 5.3.2

Частота,	Значение неравномерности АЧХ, дБ			
кГц	Полученные значения	по НТД		
30		± 10,0		
• • •		± 10,0		
150		± 10,0		

5.3.2.3 Результаты поверки считать положительными, если значение неравномерности АЧХ во всем диапазоне рабочих частот составляет ± 10 дБ.

6 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 6.1 Результаты поверки оформляются протоколом. Протокол хранится в организации, проводившей проверку.
- 6.2 Преобразователь SNK-15, удовлетворяющий требованиям настоящей методики, считается пригодным для применения. Положительные результаты поверки оформляются свидетельством о поверке установленной формы.
- 6.3 При отрицательных результатах поверки применение преобразователя SNK-15 запрещается и выдаётся извещение о его непригодности.

Ведущий научный сотрудник ГЦИ СИ АО «НИЦПВ»

И.С. Теплинский 18» 11 2016 г.