СОГЛАСОВАНО

Директор департамента Стандартизации и Сертификации по РФ и странам СНГ

АО «Шнейдер Электрик»

А.М. Саливон

«18» августа 2017 г.

Электрик

УТВЕРЖДАЮ

Технический директор ООО «ИЦРМ»

м. С. Казаков разработок в области метрономите 2017 г.

Контроллеры многофункциональные VarPlus

Методика поверки

Содержание

1 Общие положения	3
2 Операции поверки	3
3 Средства поверки	3
4 Требования к квалификации поверителей	4
5 Требования безопасности	4
6 Условия поверки	4
7 Подготовка к поверке	5
8 Проведение поверки	5
9 Оформление результатов поверки	12

1 ОБЩИЕ ПОЛОЖЕНИЯ

- 1.1 Настоящая методика поверки распространяется на контроллеры многофункциональные VarPlus (далее контроллеры) и устанавливает методику их первичной и периодической поверок.
- 1.2 На первичную поверку следует предъявлять контроллер до ввода в эксплуатацию, а также после ремонта.
- 1.3 На периодическую поверку следует предъявлять контроллер в процессе эксплуатации и хранения, который был подвергнут регламентным работам необходимого вида, и в эксплуатационных документах на который есть отметка о выполнении указанных работ.
 - 1.4 Периодичность поверки один раза в 8 лет.

2 ОПЕРАЦИИ ПОВЕРКИ

2.1 При проведении поверки выполняют операции, указанные в таблице 1. Таблица 1

	Номер пункта ме- тодики поверки	Необходимость выполнения	
Наименование операции поверки		при пер- вичной поверке	при периоди- ческой поверке
Внешний осмотр	8.1	Да	Да
Опробование	8.2	Да	Да
Подтверждение соответствия программного обеспечения	8.3	Да	Нет
Проверка электрического сопротивления изоляции и электрической прочности изоляции	8.4	Да	Нет
Определение нормируемых метрологических характеристик	8.5	Да	Да

- 2.2 Последовательность проведения операций поверки обязательна.
- 2.3 При получении отрицательного результата в процессе выполнения любой из операций поверки контроллер бракуют и его поверку прекращают.

3 СРЕДСТВА ПОВЕРКИ

3.1 При проведении поверки рекомендуется применять средства поверки, приведённые в таблице 2.

Таблица 2

Наименование, обозначение	Тип	Регистрационный номер в Федеральном информационном фонде (требуемые характеристики)			
	Основные средства поверки				
1. Установка поверочная универсальная	УППУ-МЭ	57346-14			
2. Калибратор универ- сальный	9100	25985-09			
3. Термометр цифровой прецизионный	DTI-1000	15595-12			
Вспомогательные средства поверки					
4. Установка для про- верки параметров элек- трической безопасности	GPT-79803	50682-12			

	Наименование, обозначение	Тип	Регистрационный номер в Федеральном информационном фонде (требуемые характеристики)
5.	Камера климатическая	CM-70/100-120 TBX	Диапазон воспроизводимых температур от -70 °C до +100 °C
б. тро	Термогигрометр элек- онный	«CENTER» мо- дель 313	22129-09

- 3.2 Допускается применение других средств поверки, обеспечивающих проверка характеристик контроллера с требуемой точностью.
 - 3.3 Применяемые средства поверки должны быть исправны.
- 3.4 Средства измерений должны иметь действующие свидетельства о поверке. Испытательное оборудование должно быть аттестовано.

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 4.1 К проведению поверки допускают лица, имеющие документ о повышении квалификации в области поверки средств измерений электрических величин.
- 4.2 Поверитель должен пройти инструктаж по технике безопасности и иметь действующее удостоверение на право работы в электроустановках с напряжением до 1000 В с квалификационной группой по электробезопасности не ниже III.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 5.1 При проведении поверки должны быть соблюдены требования безопасности, установленные ГОСТ 12.3.019-80, «Правилами техники безопасности, при эксплуатации электроустановок потребителей», «Межотраслевыми правилами по охране труда (правилами безопасности) при эксплуатации электроустановок». Должны быть соблюдены также требования безопасности, изложенные в эксплуатационных документах на контроллеры и применяемые средства поверки.
- 5.2 Средства поверки, которые подлежат заземлению, должны быть надежно заземлены. Подсоединение зажимов защитного заземления к контуру заземления должно производиться ранее других соединений, а отсоединение после всех отсоединений.

6 УСЛОВИЯ ПОВЕРКИ

- 6.1 При проведении поверки должны соблюдаться следующие условия применения:
 - температура окружающего воздуха (20 ± 5) °C;
 - относительная влажность воздуха от 30 до 80 %.

7 ПОДГОТОВКА К ПОВЕРКЕ

- 7.1 Перед проведением поверки необходимо выполнить следующие подготовительные работы:
- провести технические и организационные мероприятия по обеспечению безопасности проводимых работ в соответствии с действующими положениями ГОСТ 12.2.007.0-75;
- выдержать контроллер в условиях окружающей среды, указанных в 6.1, не менее 2 ч, если они находились в климатических условиях, отличающихся от указанных в 6.1;
- подготовить к работе средства измерений, используемые при поверке, в соответствии с руководствами по их эксплуатации.

8 ПРОВЕДЕНИЕ ПОВЕРКИ

8.1 Внешний осмотр

При проведении внешнего осмотра контроллера проверяют:

- отсутствие механических повреждений и внешних дефектов корпуса, переключателей, разъемов, дисплея;
 - отсутствие потеков воды;
 - отсутствие пыли на внешней поверхности контроллера;
- наличие и соответствие надписей на элементах корпуса функциональному назначению.

Результат внешнего осмотра считаются положительным, если соблюдаются вышеупомянутые требования.

8.2 Опробование

Опробование проводят следующим образом:

- 1) включают контроллер в соответствии с его руководством по эксплуатации;
- 2) проверяют наличие питания по включению жидкокристаллического дисплея (далее по тексту- ЖК дисплей) контроллера;
 - 3) проверяют работоспособность клавиш управления.

Результаты считаются положительными, если при подаче питания на контроллер происходит включение ЖК дисплея и клавиши сохраняют работоспособность.

- 8.3 Подтверждение соответствия программного обеспечения.
- 1) подготавливают контроллер в соответствии с руководством по эксплуатации.
- 2) включают контроллер в соответствии с руководством по эксплуатации;
- 3) входят в меню расширенной настройки контроллера для этого: для этого выбирают меню «НАСТРОЙКА» и подтверждают выбор нажатием клавиши «▶»;
- 4) нажимают клавиши «▼» или «▲» и введите пин-код 242, нажмите клавишу «▶» для подтверждения;
- 5) выбирают подменю «600» нажатием клавиш «▼» или «▲» и считывают наименование и номер версии встроенного программного обеспечения (далее по тексту-ПО).
- 6) сравнивают наименование и номер версии ПО считанные с дисплея контроллера с наименованием и версией ПО указанными в описании типа.

Результаты считаются положительным, если идентификационное наименование и номер версии программного обеспечения, считанные с дисплея контроллера, соответствуют данным представленным в описании типа.

- 8.4 Проверка электрического сопротивления изоляции и электрической прочности изоляции
- 8.4.1 Проверку электрического сопротивления изоляции проводят в следующей последовательности:
 - 1) отключают питание контроллера;
 - 2) отсоединяют все кабели, связывающие контроллер с питающей сетью;
- 3) подключают установку для проверки параметров электрической безопасности GPT-79803 (далее по тексту-установка) между всеми цепями тока и напряжения, а также вспомогательными цепями с номинальным напряжением свыше 40 В, соединенными вместе, и «землей», а также между цепями, которые не предполагается соединять вместе во время работы;
- 4) при помощи установки воспроизводят испытательное напряжение постоянного тока равное 500 В;
- 5) производят измерение электрического сопротивления изоляции между всеми цепями, указанными в п. 3);

Результаты испытаний считаются удовлетворительными, если измеренное значение электрического сопротивления изоляции не менее 20 МОм.

- 8.4.2 Проверку электрической прочности изоляции проводят в следующей последовательности:
 - 1) отключают питание контроллера;
 - 2) отсоединяют все кабели, связывающие контроллер с питающей сетью;
- 3) при помощи установки воспроизводят в течение одной минуты действие испытательного переменного напряжения синусоидальной формы частотой 50 Гц с действующим значением 1500 В между цепями указанными в п.8.4.1.

Результаты проверки считаются положительными, если во время испытаний не было пробоя или перекрытия изоляции.

- 8.5 Определение нормируемых метрологических характеристик
- 8.5.1 Определение относительной погрешности измерений напряжения переменного тока.

Определение относительной погрешности измерений напряжения переменного тока проводят при помощи калибратора универсального 9100 (далее по тексту – 9100) в следующей последовательности:

- 1) собирают схему, приведенную на рисунке 1;
- 2) подготавливают и включают 9100 и контроллер в соответствии с их руководствами по эксплуатации;
- 3) воспроизводят пять испытательных сигналов, равномерно распределённых внутри диапазона измерения напряжения переменного тока частотой 50 Гц;
- 4) сравнивают показания, воспроизведенные при помощи 9100 и измеренные при помощи контроллера;
- 5) рассчитывают относительную погрешность измерений напряжения переменного тока δU , %, по формуле (1).

$$\delta U = \frac{U_{\text{N}} - U_{\text{3}}}{U_{\text{3}}} \cdot 100 \%, \tag{1}$$

где $U_{\rm H}$ – измеренное значение напряжения переменного тока при помощи контроллера, В; $U_{\rm 3}$ – воспроизведенное значение напряжения переменного тока при помощи 9100, В.

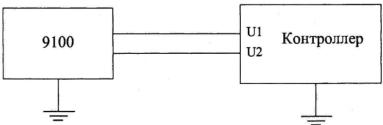


Рисунок 1 — Структурная схема определения относительной погрешности измерений напряжения, силы и частоты переменного тока

Результаты считают положительными, если полученные значения относительной погрешности не превышают $\pm 1~\%$.

8.5.2 Определение относительной погрешности измерений силы переменного тока.

Определение относительной погрешности измерений силы переменного тока я проводят при помощи калибратора универсального 9100 в следующей последовательности:

- 1) собирают схему, приведенную на рисунке 1;
- 2) воспроизводят не менее пяти испытательных сигналов, равномерно распределённых

внутри диапазона измерения силы переменного тока частотой 50 Гц;

- 3) сравнивают показания, воспроизведенные при помощи 9100 и измеренные при помощи контроллера;
- 4) рассчитывают относительную погрешность измерений силы переменного тока δI , %, по формуле (2).

$$\delta I = \frac{I_{\text{H}} - I_{\text{9}}}{I_{\text{2}}} \cdot 100 \,\%,\tag{2}$$

где $I_{\rm u}$ – измеренное значение силы переменного тока при помощи контроллера, A;

I₃ – воспроизведенное значение силы переменного тока при помощи 9100, А.

Результаты считают положительными, если полученные значения относительной погрешности не превышают ± 1 %.

8.5.3 Определение относительной погрешности измерений частоты переменного тока.

Определение относительной погрешности измерений частоты переменного тока проводят при помощи 9100 в следующей последовательности:

- 1) собирают схему, приведенную на рисунке 1;
- 2) воспроизводят не менее пяти испытательных сигналов, равномерно распределённых внутри диапазона измерения частоты переменного тока со значением напряжения переменного тока 90 В;
- 3) сравнивают показания, воспроизведенные при помощи 9100 и измеренные при помощи контроллера;
- 4) рассчитывают относительную погрешность измерений частоты переменного тока δf , %, по формуле (3).

$$\delta f = \frac{f_{\text{\tiny M}} - f_{\text{\tiny 9}}}{f_{\text{\tiny 9}}} \cdot 100 \%, \tag{3}$$

где $f_{\rm M}$ — измеренное значение частоты переменного тока при помощи контроллера, Γ ц;

 f_0 – воспроизведенное значение частоты переменного тока при помощи 9100, Гц.

- 5) повторяют пункты 2)-4) при значениях напряжения переменного тока 250 и 550 В;
- 6) повторяют пункты 2)-4), установив с 9100 вместо напряжения переменного тока, следующие значения силы переменного тока: 0,015 A; 3 A; 6 A.

Результаты считают положительными, если полученные значения относительной погрешности измерений частоты переменного тока не превышают ± 1 %.

8.5.4 Определение относительной погрешности измерений активной электрической мощности.

Определение относительной погрешности измерений активной электрической мощности проводят при помощи установки поверочной универсальной УППУ-МЭ (далее по тексту –УППУ) в следующей последовательности:

- 1) собирают схему, представленную на рисунке 2;
- 2) включают контроллер и УППУ в соответствии с их руководствами по эксплуатации;

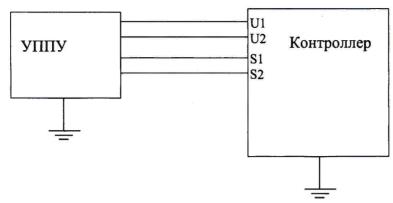


Рисунок 2 — Структурная схема определения относительных погрешностей измерений активной, реактивной и полной электрической мощности

3) при помощи УППУ воспроизводят испытательные сигналы с характеристиками, представленными в таблице 3;

Таблица 3

N <u>o</u> /N <u>o</u>	Напряжение переменного тока, В	Сила переменного тока, А	cos φ
1		0,015	0,7 L (C)
2		0,2	0,5 L (C)
3	90	1,0	0,25 L (C)
4	90	3,0	
5		4,5	0,7 L (C)
6		6	
1		0,015	0,7 L (C)
2		0,2	0,5 L (C)
3	222	1,0	0,25 L (C)
4	220	3,0	
5		4,5	0,7 L (C)
6		6	
1		0,015	0,7 L (C)
2		0,2	0,5 L (C)
3	500	1,0	0,25 L (C)
4	500	3,0	
5		4,5	0,7 L (C)
6		6	2 20
Примечания			
1 Знаком «L» обозначена индуктивная нагрузка.			
	и «С» обозначена емкостная н		

4) рассчитывают относительную погрешность измерений активной электрической мощности δP , %, по формуле (4);

$$\delta P = \frac{P_{\text{\tiny M}} - P_{\text{\tiny 3}}}{P_{\text{\tiny 3}}} \cdot 100 \,\%,$$

где $P_{\rm u}$ — измеренное значение активной электрической мощности при помощи контроллера, ${\rm Bt};$

 $P_{\rm o}$ — воспроизведенное значение активной электрической мощности при помощи

УППУ, Вт.

Результаты считают положительными, если полученные значения относительной погрешности измерений активной электрической мощности не превышают ± 2 %.

8.5.5 Определение относительной погрешности измерений реактивной электрической мощности.

Определение погрешности измерений реактивной электрической мощности проводят при помощи УППУ в следующей последовательности:

- 1) собирают схему, представленную на рисунке 2;
- 2) включают контроллер и УППУ в соответствии с их руководствами по эксплуатации;
- 3) при помощи УППУ воспроизводят испытательные сигналы с характеристиками, представленными в таблице 4;
- 4) рассчитывают относительную погрешность измерения реактивной электрической мощности δQ , %,по формуле (5).

$$\delta Q = \frac{Q_{\rm H} - Q_{\rm B}}{Q_{\rm B}} \cdot 100 \%, \tag{5}$$

где $Q_{\text{и}}$ — измеренное значение реактивной электрической мощности при помощи контроллера, вар;

 $Q_{\rm o}$ — воспроизведенное значение реактивной электрической мощности при помощи УППУ, вар.

Таблица 4

Nº/Nº	Напряжение переменного тока, В	Сила переменного тока, А	Sin φ
1		0,015	0,7
2		0,2	0,5
3	90	1,0	0,25
4	70	3,0	0,7
5		4,5	0,7
6		6	0,7
1		0,015	0,7
2	220	0,2	0,5
3		1,0	0,25
4		3,0	0,7
5		4,5	0,7
6		6	0,7
1	500	0,015	0,7
2		0,2	0,5
3		1,0	0,25
4		3,0	0,7
5		4,5	0,7
6		6	0,7

Результаты считают положительными, если полученные значения относительной погрешности измерения реактивной электрической мощности не превышают ± 2 %.

8.5.6 Определение относительной погрешности измерений полной электрической мошности.

Определение относительной погрешности измерений полной электрической мощности проводят одновременно с пунктами 8.5.4 и 8.5.5

Полная мощность S, B·A, рассчитывается по формуле (6).

$$S = \sqrt{P^2 + Q^2} \tag{6}$$

где Р – активная мощность, Вт;

Q – реактивная мощность, вар.

Рассчитывают относительную погрешность измерений полной электрической мощности по формуле (7).

$$\delta S = \frac{S_{H} - S_{9}}{S_{9}} \cdot 100 \%, \tag{7}$$

где $S_{\text{и}}$ — измеренное значение полной электрической мощности при помощи контроллера, $B \cdot A$;

 S_0 – значение полной электрической мощности рассчитанное по формуле (6), В·А.

Результаты считают положительными, если полученные значения относительной погрешности измерений полной электрической мощности не превышает ± 2 %.

8.5.7 Определение относительной погрешности измерений коэффициента мощности.

Определение относительной погрешности коэффициента мощности осуществляется одновременно с п. 8.5.4.

Рассчитывают относительную погрешность измерений коэффициента мощности бсоs ф, %, по формуле (8).

$$\delta cos\varphi = \frac{cos\varphi_{\text{M}} - cos\varphi_{\text{3}}}{cos\varphi_{\text{3}}} \cdot 100 \%, \tag{8}$$

где $cos\phi_{\rm u}$ – измеренное значение коэффициента мощности при помощи контроллера;

 $cos\phi_0$ – воспроизведенное значение коэффициента мощности при помощи УППУ.

Результаты считают положительными, если полученные значения относительной погрешности измерений коэффициента мощности не превышает ± 2 %.

8.5.8 Определение относительной погрешности измерений коэффициента искажения синусоидальности кривой напряжения

Определение относительной погрешности измерений коэффициента искажения синусоидальности кривой напряжения проводят в следующей последовательности:

- 1) собирают схему, представленную на рисунке 2;
- 2) включают контроллер и УППУ в соответствии с их руководствами по эксплуатации;
- 3) при помощи УППУ подают на контроллер не менее пяти испытательных сигналов, равномерно распределённых внутри диапазона измерений;
- 4) считывают с контроллера результаты измерений и сравнивают со значениями, воспроизведенными УППУ;
 - 5) относительная погрешность измерений δK_U , % рассчитывается по формуле (8).

$$\delta K_U = \frac{K_{U_{\text{N}}} - K_{U_{\text{B}}}}{K_{U_{\text{B}}}} \cdot 100 \%, \tag{8}$$

где $K_{U_{\rm II}}$ – измеренное значение коэффициента искажения синусоидальности кривой напряжения при помощи контроллера, %;

 $K_{U_{9}}$ – воспроизведенное значение коэффициента искажения синусоидальности кривой напряжения при помощи УППУ, %.

Результаты считают положительными, если полученные значения относительной погрешности измерений искажения синусоидальности кривой напряжения не превышает ± 2 %.

8.5.9 Определение относительной погрешности измерений коэффициента n-ой гармонической составляющей напряжения

Определение относительной погрешности измерений коэффициента n-ой гармонической составляющей напряжения проводят в следующей последовательности:

- 1) собирают схему, представленную на рисунке 2;
- 2) включают контроллер и УППУ в соответствии с их руководствами по эксплуатации;
- 3) при помощи УППУ поочередно подают на контроллер испытательные сигналы в соответствии с таблицей 5;
- 4) считывают с контроллера результаты измерений и сравнивают со значениями, воспроизведенными УППУ;
 - 5) относительная погрешность измерений $\delta K_{U(n)}$, % рассчитывается по формуле (9).

$$\delta K_{U(n)} = \frac{K_{U(n)_{\text{H}}} - K_{U(n)_{\text{9}}}}{K_{U(n)_{\text{9}}}} \cdot 100 \%, \tag{9}$$

где $K_{U_{\mathsf{H}}}$ – измеренное значение коэффициента n-ой гармонической составляющей напряжения при помощи контроллера, %;

 K_{U_9} — воспроизведенное значение коэффициента n-ой гармонической составляющей напряжения при помощи УППУ, %.

Таблица 5

таолица 5	TT	77	TT	TT	TT
Порядок	Испытательный		Испытатель-	Испытательный	
гармоники	сигнал № 1		ный сигнал №3	сигнал № 4	ный сигнал №
n		2			5
	$K_{U(n)}$,%	$K_{U(n)},\%$	$K_{U(n)},\%$	$K_{U(n)}$,%	$K_{U(n)}$,%
3	0	0	1	5	7,5
4	0	0	0	0	0
5	0	5	1	6	9
6	0	0	0	0	0
7	0	5	1	0,5	0,75
8	0	0	0	0	0
9	0	5	1	1,5	2,25
10	0	0	0	0	0
11	0	5	1	1,5	2,25
12	0	0	0	0	0
13	0	0	1	1,5	2,25
14	0	0	0	0	0
15	0	0	1	0,5	0,75
16	0	0	0	0	0
17	0	0	1	2,0	3,00
18	0	0	0	0	0
19	0	0	1	1,5	2,25

Результаты считают положительными, если полученные значения относительной погрешности измерений искажения синусоидальности кривой напряжения не превышает ± 3 %.

8.5.10 Определение абсолютной погрешности измерений температуры

Определение абсолютной погрешности измерений температуры проводят при помощи камеры климатической СМ-70/100-120 ТВХ (далее по тексту – камера) и термометра цифрового прецизионного DTI-1000 (далее по тексту-термометр) в следующей последовательности:

- 1) помещают контроллер и термометр в камеру;
- 2) включают контроллер в соответствии с руководствами по эксплуатации;
- 3) при помощи камеры устанавливают значение температуры равное -20 °C;
- 4) при помощи контроллера и термометра производят измерение температуры внутри камеры;
- 5) сравнивают полученные значения и рассчитывают абсолютной погрешность измерений температуры ΔT , °C, по формуле (10).

$$\Delta T = T_{\rm H} - T_{\rm S},\tag{10}$$

где $T_{\text{и}}$ измеренное значение температуры при помощи контроллера, °C; T_3 – измеренное значение температуры при помощи термометра, °C.

6) Поочередно повторяют пункты 4)-6) при температуре 0, 20, 40, 60 °C.

Результаты считают положительными, если полученные значения абсолютной погрешности измерений температуры не превышает ± 3 °C.

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1 Результаты поверки контроллеров оформляют в соответствии с Приказом Министерство промышленности и торговли РФ от 2 июля 2015 г. № 1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».
- 9.2 При положительном результате поверки контроллеры удостоверяются записью в паспорте, заверяемой подписью поверителя и знаком поверки или выдается «Свидетельство о поверке».
- 9.3 При отрицательном результате поверки контроллеры не допускаются к дальнейшему применению, знак поверки гасится, «Свидетельство о поверке» аннулируется, выписывается «Извещение о непригодности» или делается соответствующая запись в паспорте на контроллеры.