ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система измерительно-управляющая АСУ ТП в составе установки разделения воздуха PL4NH OOO «Праксайр Азот Тольятти»

Назначение средства измерений

Система измерительно-управляющая АСУ ТП в составе установки разделения воздуха PL4NH OOO «Праксайр Азот Тольятти» (далее - система) предназначена для измерений и контроля технологических параметров установки разделения воздуха PL4NH OOO «Праксайр Азот Тольятти» (давления, температуры, расхода, положения и уровня рабочей среды, объемной доли веществ в газовых средах, электрической мощности) в стационарных и пусковых режимах работы, а также визуализации, накопления, регистрации и хранения информации о состоянии технологических параметров.

Описание средства измерений

Принцип действия системы основан на последовательных преобразованиях измеряемых величин сначала в электрические, а затем в цифровые сигналы с последующим отображением и архивированием измерительной информации.

Система обеспечивает выполнение следующих функций:

- измерение и первичную обработку измерительной информации, линеаризацию, масштабирование, усреднение данных;
 - регистрацию и архивирование информации и событий с присвоением временной метки;
- формирование сигналов предупредительной и аварийной сигнализации по уставкам, заданным программным путем;
- автоматическую диагностику состояния технологического оборудования и контроль протекания технологического процесса;
 - программно-логическое управление исполнительными устройствами объекта;
 - регулирование технологических процессов объекта;
 - технологические защиты и блокировки;
 - вывод и отображение текущих значений параметров на АРМ операторов.

Состав системы и регистрационные номера в Федеральном информационном фонде (рег. №) средств измерений приведены в таблице 2.

Система состоит из трех уровней с иерархической распределенной обработкой информации и включает в себя:

- нижний уровень включает в себя первичные измерительные преобразователи (ПИП) которые осуществляют преобразование измеряемых физических величин в электрические сигналы в виде силы и напряжения постоянного электрического тока, а также сопротивления постоянному электрическому току;
- средний уровень вторичная (электрическая) часть (ЭИК) которая представляет собой программируемые контроллеры ControlLogix в составе комплекса измерительно-вычислительного и управляющего (ИВК) на базе платформы Logix производства фирмы «Rockwell Automation Allen-Bradley» серии 1756, рег. № 42664-09. ИВК представляет собой модульную систему, состоящую из процессорных модулей 1756-L61, 1756-L63, шасси 1756-A10, 1756-A17, модулей связи 1756-ENBT, 1756-EN2T, 1756-EN2F, аналоговых модулей ввода моделей 1756-IF6I, 1756-IF16, аналоговых модулей вывода модели 1756-OF8 и температурных модулей модели 1756-IR6I. Модули, установленные в шасси, объединяются шиной данных внутри шасси и локальной магистралью данных между шасси. Для организации распределенного сбора данных и управления контроллеры и средства операторского интерфейса объединены сетью Ethernet. Для обмена данными с сторонними системами контроля и управления используется связь стандарта RS-485. В электротехнических шкафах ИВК также располагаются технические средства для обеспечения надежного питания устанавливаемого оборудования, индикации и сигнализации о состоянии технических устройств, дверей шкафа и автоматических выключателей, надежного функционирования в условиях промышленной эксплуатации.

- верхний уровень включает в себя сервер системы и автоматизированное рабочее место (APM).

Компоненты системы соединяются проводными линиями связи.

Информационный обмен между компонентами среднего и верхнего уровней системы и между компонентами верхнего уровня осуществляется по интерфейсу Ethernet.

Внешний вид электротехнического шкафа системы представлен на рисунке 1.

Рисунок 1 - Внешний вид электротехнического шкафа системы

Пломбирование системы не предусмотрено.

Программное обеспечение

Структура и функции программного обеспечения (ПО) системы:

ПО системы состоит из встроенного ПО ИВК и ПО, устанавливаемого на АРМ.

Встроенное ПО ИВК устанавливается в энергонезависимую память модулей контроллеров в производственном цикле заводом-изготовителем и в процессе эксплуатации изменению не подлежит.

ПО APM обеспечивает работу станции оператора, осуществляет отображение измеренных значений, параметров технологического процесса, отвечает за сбор и хранение архивной информации, обеспечивает связь со сторонними системами, отвечает за резервное копирование данных, обеспечивает интерфейс для конфигурирования системы в целом и отдельных ее параметров.

ПО системы относится к метрологически значимой части программного обеспечения. Идентификационные данные ПО системы приведены в таблице 1.

Таблица 1 - Идентификационные данные ПО

Гаолица I - Идентификаци Идентификационные	стиво до			3	Вначения				
данные (признаки)					TIU TOTTITI				
Идентификационное наименование ПО	Пакет RSLogix5000 Professional Edition E Инженерная станция	Пакет GE Proficy iFIX APM SCADA	Пакет GE Proficy iFIX APM Оператора	Пакет GE Proficy iFIX APM SCADA станция наполнения авто	Пакет GE Proficy iFIX APM SCADA Инженерная станция	Пакет GE Industrial Gateway OPC Server APM SCADA 1	Пакет GE Industrial Gateway OPC Server APM Оператора 1	Пакет GE Industrial Gateway OPC Server Инженерная станция	Пакет GE Industrial Gateway OPC Server APM SCADA
Номер версии (идентификационный номер) ПО, не ниже	20.01	5.5	5.5	5.5	5.5	7.58	7.58	7.58	7.58
Цифровой идентификатор ПО	18432D72106C9534	6CC1307936063D5B	5C658673D85B1EB7	21A60A4DCF298FD6	410EA7FD196EF847	3C78D69874596BEC	3DF997D975CCFDE0	3C437E832601C8B5	2CE36A0E317A811B
Алгоритм вычисления цифрового идентификатора ПО	MD5	MD5	MD5	MD5	MD5	MD5	WD5	MD5	MD5
Другие идентификационные данные (если имеются)	Серийный номер 2022084662	Номер лицензии 200263367	Номер лицензии 200263368	Номер лицензии 200263370	Номер лицензии 200263669	-	1	1	-

Для обеспечения защиты программного обеспечения от преднамеренных и непреднамеренных изменений в системе предусмотрено:

- разделение уровней доступа для различных категорий пользователей;
- защита с помощью паролей и других специализированных средств;
- регистрация событий в системном журнале;
- формирование архива всех действий пользователей;
- наличие антивирусного программного обеспечения;

Шкафы с модулями и контроллерами, а также помещения, в которых размещается аппаратура среднего и верхнего уровней имеют замки и концевые выключатели.

Метрологические характеристики системы нормированы с учетом влияния ПО.

Уровень защиты ПО - «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Таблица 2 - Метрологические характеристики ИК системы (входные электрические сигналы ЭИК)

	posiorii iookiio hapakropiioriikii i	ПИП	1	ЭЙК	Прадали	
Измеряемая величина	Диапазон измерений (ДИ)	Тип и пределы допускаемой погрешности (основной / в усло-	Выходно й сигнал (входной сигнал	Состав и пределы допускаемой погрешности ЭИК (основной / в условиях эксплуатации)	Пределы допускаемой основной погрешности ИК	Пределы погрешности ИК в условиях эксплуатации
1	2	виях эксплуатации)	ЭИК)			7
1	<u>2</u>	3	4	5	6	7
	Избыточного давления: от 0 до 68950 кПа Абсолютного давления: от 0 до 68900 кПа Разности давлений: от -13800 до +13800 кПа Разряжения: от 0 до -101 кПа	3051 per. № 14061-10 $\gamma^7 = \pm 0,1/1,35\%$	от 4 до 20 мА	$1756\text{-}IF16$ $\gamma^1 = \pm 0,15 \%/\pm 0,15 \%$	γ = ±0,25 %	γ= ±1,5 %
ИК давления ⁸	Избыточного давления: от -101,3 до +68947,0 кПа Абсолютного давления: от 0 до 68947 кПа Разности давлений: от -13789 до +13789 кПа	3051 рег. № 14061-15 $\gamma^7 = \text{от } \pm 0,04 \text{ до}$ $\pm 1,125 \%/$ от $\pm 0,07 \text{ до}$ $\pm 3,822 \%$	от 4 до 20 мА	$1756\text{-IF}16 \\ \gamma^1 = \pm 0,15 \% / \pm 0,15 \%$	$\gamma = \text{от } \pm 0.19$ до $\pm 1.28~\%$	γ = от ±0,22 до ±4 %
	Избыточного давления: от -101,3 до 68947,0 кПа Абсолютного давления: от 0 до 68947 кПа Разности давлений: от -13789 до +13789 кПа	3051 per. № 14061-15 $\gamma^7 = \text{ ot } \pm 0.04$ $\text{ do } \pm 1.125 \text{ %/}$ ot ± 0.070 $\text{ do } \pm 3.822 \text{ % } \Rightarrow$ ROC/FloBoss per. № 14661-08 $\gamma = \pm 0.1 \text{ %}$	от 4 до 20 мА	$1756\text{-IF}16$ $\gamma^1 = \pm 0.15 \% / \pm 0.15 \%$	$\gamma = \text{от } \pm 0.3 \ \%$ до $\pm 1.38 \ \%$	γ = от ±0,32 до ±4,1 %

1	2	3	4	5	6	7
	от 0 до 3000 кПа	P499 per. № 48894-12 γ ⁷ = ±1 %/±1 %	от 4 до 20 мА	1756-IF16 $\gamma^1 = \pm 0.15 \% / \pm 0.15 \%$	$\gamma = \pm 1,15 \%$	$\gamma = \pm 1,15 \%$
ИК давления ⁸	Избыточного давления: от -101 до 68950 кПа Абсолютного давления: от 0 до 68950 кПа Разности давлений: от -13790 до 13790 кПа	2051 рег. № 56419-14 для 2051С: $\gamma^7 = \text{ от } \pm 0.05$ до ± 0.525 %; для 2051Т: $\gamma^7 = \text{ от } \pm 0.05$ до ± 0.75 %	от 4 до 20 мА	$1756\text{-}IF16$ $\gamma^1 = \pm 0,15 \%/\pm 0,15 \%$	для $2051C$: $\gamma = \text{ от } \pm 0.2$ до ± 0.675 %; для $2051T$: $\gamma = \text{ от } \pm 0.2$ до ± 0.9 %	для 2051C: $\gamma = \text{ от } \pm 0,2$ до $\pm 0,675$ %; для 2051T: $\gamma = \text{ от } \pm 0,2$ до $\pm 0,9$ %
	Избыточного давления: от -0,1 до 6,0 МПа Разности давлений: от 0 до 1,6 МПа	401002, 401011,401050 per. № 57663-14 $\gamma^7 = \pm 0.5 \%/\pm 1.3 \%$	от 4 до 20 мА	$1756\text{-}IF16$ $\gamma^1 = \pm 0.15 \% / \pm 0.15 \%$	$\gamma = \pm 0,65$	$\gamma = \pm 1,45 \%$
	Избыточного давления: от 0 до 900 кПа от 0 до 5 МПа	11 GM per. $\frac{1}{2}$ 62339-15 $\frac{1}{2}$ 62339-15	от 4 до 20 мА	1756-IF16 $\gamma^1 = \pm 0.15 \% / \pm 0.15 \%$	$\gamma = \pm 0.65$	$\gamma = \pm 1,65 \%$
	Избыточного давления: от 20 до 100 кПа	PIT per. N 65189-16 $\gamma^7 = \pm 0.2 \%/\pm 1.0 \%$	от 4 до 20 мА	$1756\text{-}\mathrm{IF}16$ $\gamma^1 = \pm 0,15 \%/\pm 0,15 \%$	$\gamma = \pm 0.35$	$\gamma = \pm 1,15 \%$
ИК температуры ⁹	от -50 до +200 °C	NWT-C- PT100/B/2 per. № 65037-16 (HCX Pt100) $\Delta = \pm (0,3+0,005 t)$ °C	от 80,31 до 175,86 Ом	1756-IR6I $\gamma^4 = \pm 0.1 \% / \pm 0.1 \%$	$\Delta = \pm (1,62 + 0,005 t)$ °C	$\Delta = \pm (1,62 + 0,005 t)$ °C

1	2	3	4	5	6	7
ИК температуры ⁹	от -50 до +450 °C	A-1044/261 per. № 63760-16 (HCX Pt100) $\Delta = \pm (0,3+0,005 t)$ °C	от 80,31 до 264,18 Ом	1756-IR6I $\gamma^4 = \pm 0,1 \%/\pm 0,1 \%$	$\Delta = \pm (1,73 + 0,005 t)$ °C	$\Delta = \pm (1,73 + 0,005 t)$ °C
	от -50 до +450 °C	A-1044/34 per. № 63759-16 (HCX Pt100) Δ = ±(0,3+0,005 t) °C	от 80,31 до 264,18 Ом	1756-IR6I $\gamma^4 = \pm 0,1 \%/\pm 0,1 \%$	$\Delta = \pm (1,73 + 0,005 t)$ °C	$\Delta = \pm (1,73 + 0,005 t)$ °C
	от -196 до +300°C	RTD43 per. № 63657-16 (HCX Pt100) Δ = ±(0,3+0,005 t) °C	от 20,25 до 212,05 Ом	1756-IR6I $\gamma^4 = \pm 0,1 \%/\pm 0,1 \%$	$\Delta = \pm (1.7 + 0.005 t) ^{\circ}C$	$\Delta = \pm (1.7 + 0.005 t) ^{\circ}C$
	от -50 до +200 °C	RBF185L483 per. № 63656-16 (HCX Pt100) Δ= ±(0,3+0,005 t) °C	от 80,31 до 175,86 Ом	1756-IR6I $\gamma^4 = \pm 0,1 \%/\pm 0,1 \%$	$\Delta = \pm (1,620 + 0,005 t)$ °C	$\Delta = \pm (1,620 + 0,005 t)$ °C

1	2	3	4	5	6	7
	от -50 до +300 °C	90.2020 per. № 60922-15 (HCX Pt100) Δ = ±(0,3+0,005 t) °C	от 72,33 до 280,98 Ом	1756-IR6I $\gamma^4 = \pm 0,1 \%/\pm 0,1 \%$	$\Delta = \pm (1.7 + 0.005 t) ^{\circ}C$	$\Delta = \pm (1.7 + 0.005 t)$ °C
ИК температуры ⁹	от -50 до +200 °C	HL per. № 56271-14 (HCX Pt100) $\Delta =$ ±(0,3+0,005 t) °C	от 80,31 до 175,86 Ом	1756-IR6I $\gamma^4 = \pm 0,1 \%/\pm 0,1 \%$	$\Delta = \pm (1,62 + 0,005 t)$ °C	$\Delta = \pm (1,62 + 0,005 t)$ °C
	от -50 до +260 °C	S14405PD per. № 53493-13 (HCX Pt100) Δ = ±(0,3+0,005 t) °C	от 80,31 до 197,71 Ом	1756-IR6I $\gamma^4 = \pm 0,1 \%/\pm 0,1 \%$	$\Delta = \pm (1,65 + 0,005 t)$ °C	$\Delta = \pm (1,65 + 0,005 t)$ °C
	от -100 до +400 °C	«S» per. № 48495-11 (HCX Pt100) Δ = ±(0,3+0,005 t) °C	от 60,26 до 247,09 Ом	1756-IR6I $\gamma^4 = \pm 0,1 \%/\pm 0,1 \%$	$\Delta = \pm (1,73 + 0,005 t)$ °C	$\Delta = \pm (1,73 + 0,005 t)$ °C
	от -50 до +300 °C	ТСП 90 тип В рег. № 41742-09 (HCX Pt100) $\Delta = \pm (0,3+0,005 t)$ °C $\Delta = \pm (0,5+0,005 t)$ °C	от 80,31 до 212,05 Ом	1756-IR6I $\gamma^4 = \pm 0,1 \%/\pm 0,1 \%$	$\Delta = \pm (1.7 + 0.005 t) ^{\circ}C$	$\Delta = \pm (1.9 + 0.005 t)$ °C
	от -50 до +155°C	TCΠ S100050PM per. № 46921-11 (HCX Pt100) $\Delta = \pm (0,15+0,002 t)$ °C	от 80,31 до 212,05 Ом	1756-IR6I $\gamma^4 = \pm 0.1 \% / \pm 0.1 \%$	$\Delta = \pm (1.7 + 0.005 t) ^{\circ}C$	$\Delta = \pm (1.7 + 0.005 t) ^{\circ}C$

1	2	3	4	5	6	7
	от -196 до +300 °C	ТСП 65 тип В рег. № 22257-11 (HCX Pt100) Δ= ±(0,3+0,005 t) °C	от 20,25 до 212,05 Ом	1756-IR6I $\gamma^4 = \pm 0,1 \%/\pm 0,1 \%$	$\Delta = \pm (1,7+0,005 t) ^{\circ}C$	$\Delta = \pm (1.7 + 0.005 t) ^{\circ}C$
ИК температуры ⁹	от 0 до +650 °C	EZ-ZONE PM6L1EJ- AAFAAAA per. № 64971-16 ДИ от $0 \le t \le 333$ °C $\Delta = \pm 3,15$ °C/ $\Delta = \pm 5,15$ °C	от 4 до 20 мА	$1756\text{-IF}16$ $\gamma^1 = \pm 0,15 \%/\pm 0,15 \%$	$\Delta = \pm 4,125 {}^{\circ}\text{C}$	Δ = ±5,65 °C
		EZ-ZONE PM6L1EJ- AAFAAAA рег. № 64971-16 ДИ от 333 \leq t \leq 650 °C $\Delta = \pm (0,65 + 0,0075 t)$ °C/ $\Delta = \pm (2,65 + 0,0075 t)$ °C	от 4 до 20 мА	$1756\text{-IF}16$ $\gamma^1 = \pm 0,15 \%/\pm 0,15 \%$	$\Delta = \pm (1,625 + 0,0075 t)$	$\Delta = \pm (3,625 + 0,0075 t)$
	от 0 до +200 °С	TC 51160 (тип Т) рег. № 64010-16 ДИ от 0 до 100 °С включ. Δ = ±1,5 °С	от 0 до +4,279 мВ	1756-IT6I $\Delta = 0,54 {}^{\circ}\mathrm{C}^{3}$	Δ = ±2,05 °C	Δ = ±2,05 °C
		ТС 51160 (тип Т) рег. № 64010-16 ДИ св. 100 до 200 °C включ. $\Delta = \pm 3,0$ °C	от -4,279 до +9,288 мВ	1756-IT6I $\Delta = 0.54 ^{\circ}\text{C}^{3}$	$\Delta = \pm 3,54 ^{\circ}\text{C}$	Δ = ±3,54 °C

1	2	3	4	5	6	7
ИК температуры ⁹	от -50 до +450 °C	A-1044/34 per. № 63759-16 (HCX Pt100) $\Delta = \pm (0,3+0,005 t) °C$	от 80,31 до 264,18 Ом	1756-IR6I $\gamma^4 = \pm 0.1 \% / \pm 0.1 \%$	$\Delta = \pm (1,73 + 0,005 t)$ °C	$\Delta = \pm (1.73 + 0.005 t)$ °C
	от -50 до +250 °C	TR58 per. № 47279-11 (HCX Pt100) $\Delta = \pm (0,3+0,005 t)$ °C	от 80,31 до 194,10 Ом	1756-IR6I $\gamma^4 = \pm 0,1 \%/\pm 0,1 \%$	$\Delta = \pm (1,65 + 0,005 t) ^{\circ}C$	$\Delta = \pm (1,65 + 0,005 t)$ °C
	от -50 до +200 °C	NWT-C-PT100B2 per. № 65037-16 (HCX Pt100) $\Delta = \pm (0,3+0,005 t)$ °C	от 80,31 до 175,86 Ом	1756-IR6I $\gamma^4 = \pm 0.1 \% / \pm 0.1 \%$	$\Delta = \pm (1,62 + 0,005 t) ^{\circ}C$	$\Delta = \pm (1,62 + 0,005 t)$ °C
ИК объемной доли влаги в газах	от 1 до 100 млн ⁻¹	АМЕТЕК модель 2850 рег. № 63499-16 в ДИ от 1 до 10 млн $^{-1}$ в ДИ св. 10 до 100 млн $^{-1}$ в ДИ св. 10 до 100 млн $^{-1}$ $\delta = \pm 10~\%$	от 4 до 20 мА	$1756\text{-IF}16$ $\gamma^1 = \pm 0,15 \%/\pm 0,15 \%$	$\Delta = \pm 1,15 \text{ млн}^{-1}$ в ДИ от 1 до 10 млн $^{-1}$; для ДИ св. 10 до 100 млн $^{-1}$ см. примечание 5 к таблице 2	
	от 0,1 до 10 млн ⁻¹	АМЕТЕК модель 3050-АМ рег. № 35147-07 δ = ±10 %	от 4 до 20 мА	1756-IF16 $\gamma^1 = \pm 0.15 \% / \pm 0.15 \%$	см. примечани	е 5 к таблице 2

1	2	3	4	5	6	7
ИК следовых количеств азота в аргоне	от 0 до 20 млн ⁻¹	Анализаторы следовых количеств азота в аргоне серии 1200 (модель 1202A) рег. № 64595-16 в ДИ от 0 до 2 млн $^{-1}$ включ. $\gamma = \pm 20$ %; в ДИ св. 2 до 10 млн $^{-1}$ включ. $\delta = \pm 20$ %; в ДИ св. 10 до 20 млн $^{-1}$ включ. $\delta = \pm 15$ %	от 4 до 20 мА	1756-IF16 $\gamma^1 = \pm 0.15 \% / \pm 0.15 \%$	$\gamma = \pm 20,15~\%$ в ДИ от 0 до 2 млн ⁻¹ включ.; для ДИ: св. 2 до 10 млн ⁻¹ включ.; св. 10 до 20 млн ⁻¹ включ. см. примечание 5 к таблице 2	
ИК следовых количеств азота в аргоне	от 0 до 20 млн ⁻¹	Анализаторы следовых количеств азота в аргоне серии 1200 (модель 1202В) рег. № 64595-16 в ДИ от 0 до 2 млн $^{-1}$ включ. $\gamma = \pm 20$ %; в ДИ св. 2 до 10 млн $^{-1}$ включ. $\delta = \pm 20$ %; в ДИ св. 10 до 20 млн $^{-1}$ включ. $\delta = \pm 15$ %	от 4 до 20 мА	1756-IF16 $\gamma^1 = \pm 0.15 \% / \pm 0.15 \%$	в ДИ от 0 до 2 млн $^{-1}$ включ. γ = $\pm 20,15$ %; для ДИ: св. 2 до 10 млн $^{-1}$ включ.; св. 10 до 20 млн $^{-1}$ включ. см. примечание 5 к таблице 2	
ИК объемной доли	от 0 до 10 млн-1	Газоанализаторы Servopro модель Servopro 4100 рег. № 53156-13 γ = ±20 %/ ±32 %	от 4 до 20 мА	1756-IF16 $\gamma^1 = \pm 0.15 \% / \pm 0.15 \%$	$\gamma = \pm 2$	0,15 %
диоксида углерода СО ₂	от 70 до 100 % от 99 до 100 %	Газоанализаторы Servopro модель Servopro 4100 рег. № 53156-13 $\gamma = \pm 0.2 \% / \pm 0.2 \%$	от 4 до 20 мА	1756-IF16 $\gamma^1 = \pm 0,15 \%/\pm 0,15 \%$	$\gamma = \pm 0$	0,35 %

1	2	3	4	5	6	7
ИК объемной доли кислорода O_2 в газовых смесях	от 0 до 10 млн ⁻¹	Анализаторы кислорода Delta F DF-3хОЕ per. № 55063-13 γ= ±20 %/ ±24 %	от 4 до 20 мА	$1756\text{-}IF16$ $\gamma^1 = \pm 0.15 \% / \pm 0.15 \%$	$\gamma = \pm 20,15 \%$	$\gamma=\pm24,15~\%$
ИК содержания горючих газов в газовых средах и водных растворах	от 0 до 300 млн ⁻¹	Анализаторы газа модель 4020 рег. № $46315-10$ $\gamma = \pm 15~\%/\pm 24~\%$ (приведенное к $500~\text{млн}^{-1}$)	от 4 до 20 мА	$1756\text{-IF}16$ $\gamma^1 = \pm 0,15 \%/\pm 0,15 \%$	$\gamma = \pm 15,15 \%$	$\gamma=\pm24,\!15~\%$
ИК массового расхода газа	от 0,005 до 0,15 м ³ /ч	Расходомеры термоанемометрические ТорТrak 824S рег. № 62862-15 δ = ±1,5 %	от 4 до 20 мА	$1756\text{-}\mathrm{IF6I}$ $\gamma^1 = \pm 0,1 \%/\pm 0,1 \%$	см. примечание 5 к таблице 2	
	от 0 до 5625,0 кг/ч от 0 до 7500,0 кг/ч	Расходомеры-счетчики вихревые 8800 рег. № $64613-16$ $\delta = \pm 1,025 \%/\pm 1,03 \%$	от 4 до 20 мА	1756-IF16 $\gamma^1 = \pm 0.15 \% / \pm 0.15 \%$	% см. примечание 5 к таб	

1	2	3	4	5	6	7
ИК радиального перемещения	от 0 до 125 мкм	Преобразователи перемещения токовихревые BN-ППТ рег. № 56536-14 $\delta = \pm 3.0 \ \%/\pm 3.4 \ \%$ => Трансмиттеры вибрационные 990 рег. 63695-16 $\delta = \pm 3.0 \ \%/\pm 3.4 \ \%$	от 4 до 20 мА	Преобразователи измерительные PR модель 5104 рег. № 51059-12 $\gamma = \pm 0.1 \ \%/\pm 0.1 \ \% = 1756\text{-IF6I}$ $\gamma^1 = \pm 0.1 \ \%/\pm 0.1 \ \%$	см. примечание 5 к таблице	
	от 0 до 125 мкм	Преобразователи перемещения токовихревые 21000 рег. № 63470-16 $\delta = \pm 3.0 \ \%/\pm 3.4 \ \%$ \Rightarrow Трансмиттеры вибрационные 990 рег. 63695-16 $\delta = \pm 3.0 \ \%/\pm 3.4 \ \%$	от 4 до 20 мА	Преобразователи измерительные PR модель 5104 рег. № 51059-12 $\gamma = \pm 0.1 \ \%/\pm 0.1 \ \% = 1756\text{-IF6I}$ $\gamma^1 = \pm 0.1 \ \%/\pm 0.1 \ \%$	см. примечани	е 5 к таблице 2
	от 0 до 125 мкм	Преобразователи перемещения токовихревые 32000 рег. № 63471-16 $\delta = \pm 3.0 \ \%/\pm 3.4 \ \%$ => Трансмиттеры вибрационные 990 рег. 63695-16 $\delta = \pm 3.0 \ \%/\pm 3.4 \ \%$	от 4 до 20 мА	Преобразователи измерительные PR модель 5104 рег. № 51059-12 $\gamma = \pm 0.1 \ \%/\pm 0.1 \ \% = 1756\text{-IF6I}$ $\gamma^1 = \pm 0.1 \ \%/\pm 0.1 \ \%$	см. примечани	е 5 к таблице 2
ИК осевого перемещения	от 0,25 до 1,65 мм	Преобразователи перемещения токовихревые ВN-ППТ рег. № 56536-14 $\delta = \pm 3.0 \ \%/\pm 3.4 \ \%$ => Трансмиттеры 991 рег. 63692-16 $\delta = \pm 1.5 \ \%/\pm 1.9 \ \%$	от 4 до 20 мА	Преобразователи измерительные PR модель 5104 рег. № 51059-12 $\gamma = \pm 0,1 \%/\pm 0,1 \% \Rightarrow 1756\text{-IF6I}$ $\gamma^1 = \pm 0,1 \%/\pm 0,1 \%$	см. примечани	е 5 к таблице 2

1	2	3	4	5	6	7	
ИК виброскорости	от 0 до 12,7 включ. мм/с	Вибропреобразователи 64X модель 640 рег. № 36255-07 $\delta = \pm 5 \%$	от 4 до 20 мА	1756-IF16 $\gamma^1 = \pm 0.15 \% / \pm 0.15 \%$	см. примечание 5 к таблице 2		
ИК виброускорения	от 0 до (от 19 до 490) включ. ${\rm M/c}^2$	Вибропреобразователи 64X модель 649 рег. № 36255-07 $\delta = \pm 5 \%$	от 4 до 20 мА	1756-IF16 $\gamma^{1} = \pm 0.15 \% / \pm 0.15 \%$	см. примечание 5 к таблице 2		
ИК активной электрической мощности	0 до 10000 кВт (от 0 до 6300 В, от 0 до 1250 А)	VRQ 3N/S2 peг. № 50606-12 Кл.т. 0,5; ARJP2/N2J peг. № 50463-12 Кл.т. 0,5	от 4 до 20 мА	Устройства измерения SEPAM 1000+ серии 40 с модулем MSA 141 рег. № 32965-06 $\gamma = \pm 0.6 \%/\pm 0.6 \% \Rightarrow 1756\text{-IF16}$ $\gamma^1 = \pm 0.15 \%/\pm 0.15 \%$	см. примечание 6 к таблице 2		
ик частоты	от 0 до $2900^{\text{ oб}}/_{\text{мин}}$ от 0 до $3500^{\text{ oб}}/_{\text{мин}}$ от 0 до $4250^{\text{ oб}}/_{\text{мин}}$	-	от 4 до 20 мА	1756-IF16 $\gamma^1 = \pm 0.15 \% / \pm 0.15 \%$	$\gamma = \pm 0.15$ %	$\gamma = \pm 0.15 \%$	

Примечания

 $C_{\text{изм}}$ - измеренное значение концентрации, Δ - абсолютная погрешность, δ - относительная погрешность, γ - приведенная погрешность, t - измеренное значение температуры, °C. Нормальные условия применения: температура окружающей среды от +15 до +25 °C.

- 1 Пределы допускаемой основной приведенной к верхнему значению (нормирующие значение для модулей см. в описании типа на средство измерений рег. № 42664-09) диапазона измерений (ДИ) погрешности ЭИК указаны с учетом погрешности, вносимой линиями связи.
- 2 В графах 5, 6 и 7 пределы допускаемой погрешности сигналов от термопар указаны с учетом погрешности канала компенсации температуры холодного спая.
- 3 См. таблица 2 описания типа на средство измерений (рег. № 42664-09).
- 4 Пределы допускаемой основной приведенной к диапазону измерений (ДИ) погрешности ЭИК указаны с учетом погрешности, вносимой линиями связи.
- 5 Пределы допускаемой относительной погрешности ИК рассчитывать по формуле (1):

$$d_{HK} = \pm \mathop{\mathsf{gd}}_{\dot{\mathbf{q}}} + \frac{\mathcal{I} \mathcal{U}_{\max} \times \mathbf{g}}{\mathcal{I}} \, \dot{\mathbf{g}}, \tag{1}$$

где d_i - предел основной относительной погрешности ПИП, %;

 ${
m ДИ}_{
m max}$ - максимальное значение диапазона измерений; g - предел основной приведенной погрешности аналогового модуля, %;

Д - измеренное значение.

6 Границы интервала относительной погрешности ИК рассчитывать по формуле (2):

$$d_{HK} = 1,15 \sqrt{d_{TT}^2 + d_{TH}^2 + d_{QP}^2 + d_{JC}^2 + (g_{\phi E} \times \frac{P_{HOM}}{P_i})^2 + (g_{\mathcal{H}K} \times \frac{Di^{ex}}{i_i^{ex}})^2},$$
(2)

где $\delta_{\text{ИК}}$ - границы интервала относительной погрешности измерительного канала для вероятности 0,95;

 δ_{TT} (δ_{TH}) - предел допускаемой относительной погрешности по амплитуде трансформатора тока (напряжения);

 $\delta_{\Theta P}$ - границы интервала относительной погрешности, обусловленная угловыми погрешностями трансформаторов, определяемая по формуле (3):

$$d_{QP} = 0.029 \times (Q_{TT} + Q_{TH}) \frac{\sqrt{1 - \cos^2 j}}{\cos j}$$
 (3)

где Θ_{TT} (Θ_{TH}) - предел допускаемой угловой погрешности, в минутах, трансформатора тока (напряжения);

соѕф - косинус угла сдвига между векторами первичных тока и напряжения;

 $\delta_{\text{ЛС}}$ - предел относительной погрешности, обусловленной потерями напряжения в линии связи между ТН и измерительным преобразователем;

γ₀Е - предел допускаемой приведенной погрешности нормирующего преобразователя;

 P_{HOM} - номинальное значение мощности с учетом коэффициентов трансформации TT и TH, к которому приведена $\gamma_{\Phi E}$;

P_i - измеренное значение мощности с учетом коэффициентов трансформации ТТ и ТН;

уэик - предел приведенной погрешности вторичной части ИК;

 $\Delta i^{\rm BX}$ - диапазон изменения входного токового сигнала вторичной части; $i^{\rm BX}_{\ \ i}$ - поступившее значение входного токового сигнала.

- 7 Пределы допускаемой основной приведенной к диапазону измерений (ДИ) погрешности указаны с учетом погрешности, вносимой линиями связи.
- 8 В таблице указан максимальный диапазон измерений, внутри которого выбираются конкретные рабочие поддиапазоны измерений. Нормирующим значением для расчета пределов допускаемой приведенной погрешности ИК, является значение выбранного поддиапазона измерений.
- 9 В таблице указан максимальный диапазон измерений, внутри которого выбираются конкретные рабочие поддиапазоны измерений. Пределы допускаемой основной абсолютной погрешности ИК температуры приведены для верхнего значения диапазона измерений.

Таблица 3 - Метрологические характеристики ИК управления

	ЭИК		ПИП		Пределы
Диапазон сигнала на входе / выходе ИК	Состав и пределы допускаемой погрешности ЭИК (основной / в рабочих условиях эксплуатации)	Входной сигнал ПИП (выходной сигнал ЭИК)	Тип и пределы допускаемой погрешности (основной / в рабочих условиях эксплуатации)	Пределы допускаемой основной погрешности ИК	допускаемой погрешности ИК в рабочих
1	2	3	4	5	6
Цифровой сигнал 16 бит /от 20 до 100 кПа	1756-OF8 $\gamma^1 = \pm 0.05 / \pm 0.05 \%$	от 4 до 20 мА	IPT per. № 65276-16 $\gamma^3 = \pm 0.5 / \pm 2.5 \%$	$\gamma = \pm 0,55 \%$	$\gamma = \pm 2,55 \%$

Примечания:

- у приведенная погрешность. Нормальные условия применения: температура окружающей среды от +15 до +25 °C.
- 1 Пределы допускаемой основной приведенной к верхнему значению (нормирующие значение для модулей см. в описании типа на средство измерений рег. № 42664-09) диапазона измерений (ДИ) погрешности ЭИК указаны с учетом погрешности, вносимой линиями связи.
- 2 В таблице указан максимальный диапазон измерений, внутри которого выбираются конкретные рабочие поддиапазоны измерений. Нормирующим значением для расчета пределов допускаемой приведенной погрешности ИК, является значение выбранного поддиапазона измерений.
- 3 Пределы допускаемой основной приведенной к диапазону измерений (ДИ) погрешности указаны с учетом погрешности, вносимой линиями связи.

Таблица 4 - Основные технические характеристики ИК

таблица т основные техни теские характериетики тих				
Наименование характеристики	Значение			
Рабочие условия эксплуатации ПИП нижнего уровня системы:				
- температура окружающей среды, °С:				
для ПИП, установленных в помещениях	от +5 до +40			
для ПИП, установленных вне помещений	от -34 до +40			
- относительная влажность воздуха, не более, %	80			
- атмосферное давление, кПа	от 84,6 до 106,7			
Рабочие условия эксплуатации оборудования среднего уровня системы:				
- температура окружающей среды, °С	от 0 до +60			
- относительная влажность воздуха, %	от 5 до 95			
	(без конденсации)			
Параметры электропитания системы:				
- напряжение переменного тока, В	от 85 до 265			
- частота, Гц	от 47 до 63			
Потребляемая мощность, ном/макс, МВт	30/100			
Среднее время наработки на отказ, ч, не менее	100000			
Средний срок службы, лет, не менее	20			

Знак утверждения типа

наносится на титульный лист формуляра 45028.015 ФО типографским способом.

Комплектность средства измерений

Таблица 5 - Комплектность средства измерений

Наименование	Обозначение	Количество
Система измерительно-управляющая АСУ ТП в составе установки разделения воздуха PL4NH ООО «Праксайр Азот Тольятти	заводской № 45028	1
Комплект ЗИП	-	1
Формуляр	45028.015 ФО	1
Методика поверки	МП 201-010-2017	1

Поверка

осуществляется по документу МП 201-010-2017 «Система измерительно-управляющая АСУ ТП в составе установки разделения воздуха PL4NH OOO «Праксайр Азот Тольятти». Методика поверки», утвержденному ФГУП «ВНИИМС» 22.05.2017 г.

Основные средства поверки:

- калибратор многофункциональный MC5-R (регистрационный номер в Федеральном информационном фонде 18624-99);
- магазин сопротивления измерительный МСР-60М (регистрационный номер в Федеральном информационном фонде 2751-71).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные документы, устанавливающие требования к системе измерительноуправляющей АСУ ТП в составе установки разделения воздуха PL4NH OOO «Праксайр Азот Тольятти»

 Γ ОСТ Р 8.596-2002 Γ СИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Фирма «Mehler Electric Wuhan Co., Ltd»

Адрес: 639 Gexin Avenue, Dongxihu Wuhan China Post Code: 430040

Телефон/факс: 0086-027-83256969

Web-сайт: www.mehler.cn

Заявитель

Общество с ограниченной ответственностью «Праксайр Азот Тольятти»

(ООО «Праксайр Азот Тольятти»)

ИНН 7709930344

Адрес: 445007, РФ, г. Тольятти, ул. Новозаводская, д. 6

Телефон/факс: (495) 287-13-07 / 967-97-00

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы»

Адрес: 119361, г. Москва, ул. Озерная, д.46 Телефон/факс: (495)437-55-77 / 437-56-66

Web-сайт: <u>www.vniims.ru</u> E-mail: office@vniims.ru

Аттестат аккредитации Φ ГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

CC	Т	`~ = 1.5
C.C.	1	`олубев

М.п. «___ » _____ 2017 г.