ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Системы измерительные "ПОТОК АЛЬФА ПЛЮС"

Назначение средства измерений

Системы измерительные "ПОТОК АЛЬФА ПЛЮС" (далее – системы) предназначены для измерений массы, объема, температуры жидких продуктов (молоко и молочные продукты, соки и соковые концентраты, растительное масло, пиво, мальтоза, вода питьевая, техническая, кислоты, щелочи, лакокрасочные изделия, водноспиртовые растворы, ликероводочные и спиртосодержащие жидкости, коньячные спирты, коньяки, пиво, слабоалкогольные напитки, вина и виноматериалы и др.), объемной концентрации (крепости) и объема безводного этилового и денатурированного спирта в растворе.

Описание средства измерений

Принцип действия систем основан на измерении массы и/или объема температуры и плотности жидких продуктов с использованием массового, электромагнитного или вихревого расходомеров с последующей обработкой и передачей результатов измерений на устройство отображения или в канал передачи данных для архивации.

Системы состоят из:

- одного или нескольких массовых расходомеров Promass (Госреестр № 15201-11), Promass 100, 200 (Госреестр № 57484-14), Micro Motion (Госреестр № 45115-10), электромагнитных расходомеров Promag (Госреестр № 14589-14), Симаг 11-М (Госреестр № 56126-13) и (или) вихревых расходомеров Prowirl (Госреестр № 15202-14), Prowirl 200 (Госреестр №58533-14) по одному на каждый измерительный канал;
 - одного или нескольких датчиков температуры Pt100;
 - перекачивающего насоса (при необходимости);
 - модуля измерительного (устройство сбора и передачи данных) (один на систему);
 - рабочего места оператора.

Дополнительно, для исключения влияния газовой составляющей, может устанавливаться воздухоотделитель.

В зависимости от применения системы могут иметь следующие исполнения:

А - для измерений объема водноспиртовых растворов, вина и виноматериалов, объемной концентрации (крепости) и объема безводного этилового и денатурированного спирта в растворе;

Б - для измерений массы и/или объема и температуры жидких не спиртосодержащих продуктов.

В системах А объем водноспиртовых растворов вычисляется по измеренным методом Кориолиса значениям массы и плотности, плотность водноспиртового раствора – резонансным методом, а температура – при помощи встроенного в прибор датчика температуры. Для измерений объема вина, виноматериалов и пива применяются электромагнитные расходомеры, а для измерений температуры – отдельный датчик температуры.

В системах Б масса рабочей среды измеряется методом Кориолиса, температура – при помощи встроенного в прибор отдельного датчика температуры. Для измерений объема применяются электромагнитные и/или вихревые расходомеры, а для измерений температуры – отдельный датчик температуры.

Для систем А на основании первичной измерительной информации в модуле измерительном проводится расчет, архивация и местная индикация суммарного объема измеряемой среды суммарного объема безводного спирта, приведенного к 20 °C и объемной концентрации этилового, коньячного или денатурированного спирта, содержащегося в измеряемой среде (крепости). Модуль измерительный имеет встроенную опцию Ethernet для передачи данных в информационную систему в стандартизованном формате. Опционально модуль предполагает подключение штучного счетчика бутылок (цифровой протокол Modbus). Объем измеряемой среды определяется соотношением значений измеренной массы среды, прошедшей через расходомер, плотности и температуры для расходомеров кориолисового типа и прямым измерением объема для электромагнитных расходомеров. Расчет концентрации (крепости) спирта в процентах по объему и объем безводного спирта выполняется путем программного пересчета измеренной расходомером плотности и температуры (для расходомеров кориолисового типа) водноспиртового раствора в единицы концентрации (крепости) спирта согласно данным зависимости концентрации от температуры и плотности по ГОСТ 3639-79, измеренных кориолисовым расходомером массы плотности и температуры измеряемой среды.

Для систем Б выбор типа расходомера определяется свойствами измеряемой жидкости и необходимостью контроля ее плотности и температуры. Данные с расходомеров передаются в модуль измерительный по протоколам Modbus, Profibus, Ethernet или аналоговым сигналам.

Для систем А и Б дополнительно, для исключения влияния газовой составляющей, может устанавливаться воздухоотделитель.

Для систем Б к модулю измерительному возможно подключение дополнительных устройств контроля технологических параметров (температуры, давления, проводимости, рН и др.).

Система обеспечивает выполнение следующих функций с индикацией:

- текущего времени и текущей даты, времени наработки системы с момента первого включения системы по каждой точке измерений;
 - суммарной массы или объема измеряемой среды;
 - суммарной объема измеряемой среды, приведенного к 20 °C;
- суммарного объема безводного спирта, приведенного к $20\,^{\circ}$ C, содержащегося в измеряемой среде (для систем A);
- объемной концентрации этилового и денатурированного спирта, содержащегося в измеряемой среде (крепость) (для систем A);
 - температуры измеряемой среды;
 - плотности измеряемой среды (при применении расходомера кориолисового типа);
 - текущего массового или объемного расхода на ПЭВМ и/или дисплее расходомера;
 - плотности и температуры измеряемой среды;
 - режимов работы системы;
 - сообщений об ошибках;
- сохранение ранее измеренных значений массы и объема и времени наработки при отключении питания системы с отметкой в памяти системы момента отключения (не менее 10 записей);
- показателей за период измерений (суммарно объема контролируемой среды, объема безводного спирта в контролируемой среде, приведенного к $20~^{\circ}$ С, средней крепости, средней температуры) (для систем A);
- создание архива в системе и возможность вывода из архива на дисплей информации о суммарных массах и объемах, крепости и температуре, неисправностях и ошибках по отношению к текущей дате;
 - хранение данных не менее 5 лет;
- вывод на экран ПЭВМ информации из архива за любой интервал времени (по отношению к текущей дате, индицируемой модулем измерительным);
 - контроль режимов работы АСИиУ (для систем А);
 - защиту от несанкционированных действий оператора.

Общая схема системы приведена на рисунке 1.

Места опломбирования контроллера модуля измерительного приведены на рисунке 2.

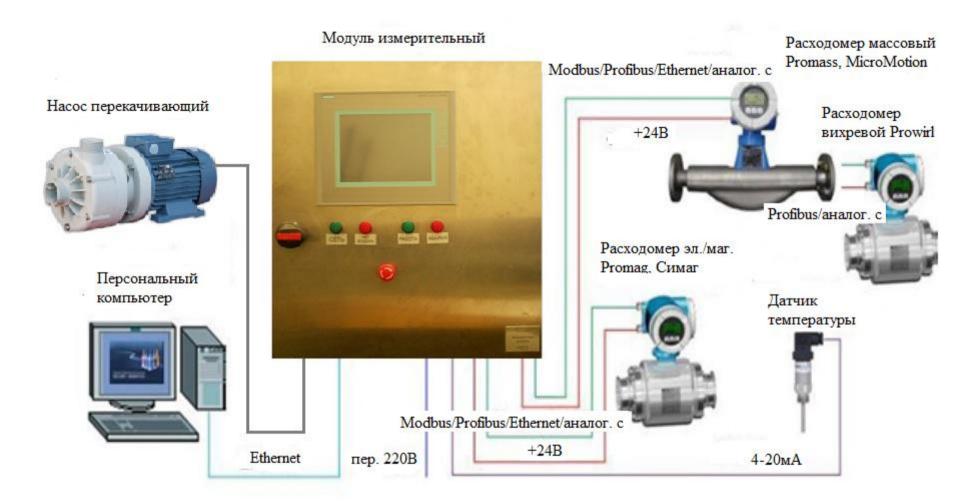


Рисунок 1 – Общая схема системы измерительной "ПОТОК АЛЬФА ПЛЮС"

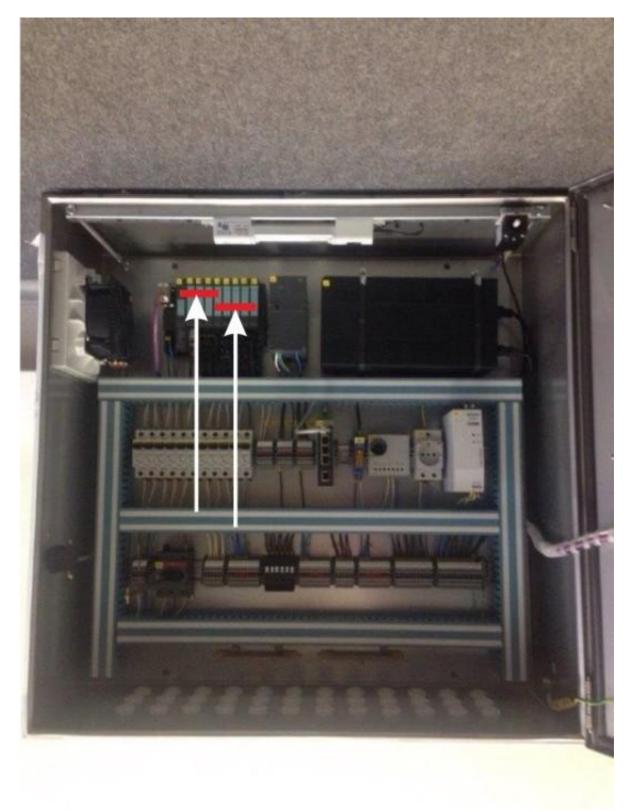


Рисунок 2 - Места опломбирования контроллера модуля измерительного

Программное обеспечение

Программное обеспечение состоит из двух частей:

- программное обеспечение нижнего уровня модуля измерительного;
- программное обеспечение верхнего уровня автоматизированного рабочего места (APM) оператора.

Обработка результатов измерений и вычислений (метрологически значимая часть Π O) входит в состав программного обеспечения нижнего уровня. Доступ к цифровому идентификатору (контрольной сумме) Π O нижнего уровня невозможен (проводится самодиагностика без отображения контрольной суммы).

Защита ПО от преднамеренных изменений осуществляется посредством наличия специальных средств защиты (пакета программ для отладки и разработки ПО), исключающих возможность несанкционированных модификаций, загрузки, считывания памяти из СРU, удаления или иных преднамеренных изменений метрологически значимой части ПО и результатов измерений.

Идентификационные данные (признаки) метрологически значимой части ПО указаны в таблице 1.

Таблица 1.

Идентификационные данные (признаки)	Значение		
Идентификационное наименование ПО	Alfa Stream.exe		
Номер версии (идентификационный номер) ПО	3.xx		
Цифровой идентификатор ПО	0B42CF891B12897E7A387B9815 E4783713DDE011B0D27DD05FC 8CB082FA43C93		

Уровень защиты от непреднамеренных и преднамеренных изменений – "высокий" в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Таблица 2

Наименование характеристики	Исполнение систем	
	A	Б
Диапазон измерений расхода ($m^3/4$) в зависимости от		
диаметра условного прохода расходомеров входящих		
в состав системы, мм:		
8 (кроме вихревых расходомеров)	от 0,07 до 1,95	от 0,07 до 1,95
15	от 0,5 до 6,40	от 0,5 до 6,40
25	от 1,2 до 17,5	от 1,2 до 17,5
40	от 5,0 до 44	от 5,0 до 44
50	от 8 до 65	от 8 до 65
65 (только для электромагнитных расходомеров)	от 7,0 до 100	от 7,0 до 100
80	от 20 до 170	от 20 до 170
100	от 35 до 340	от 35 до 340
125 (только для электромагнитных расходомеров)	от 32 до 450	от 32 до 450
150	от 80 до 790	от 80 до 790
200 (только для электромагнитных и вихревых	-	от 90 до 1100
расходомеров)		
250 (только для электромагнитных и вихревых	-	от 150 до 1700
расходомеров)		
300 (только для электромагнитных и вихревых	-	от 200 до 2500
расходомеров)		

Наумамарамуу марамурануу атуучу	Исполнение систем		
Наименование характеристики	A	Б	
Пределы допускаемой относительной погрешности	±0,4	-	
измерений объема водноспиртового раствора, %			
Пределы допускаемой относительной погрешности	-	$\pm 0,2;\pm 0,5;\pm 0,7$	
измерений массы (объема)*, %		±0,75**; ±1**	
Пределы допускаемой абсолютной погрешности из-	±0,2	-	
мерений концентрации (крепости), %			
Пределы допускаемой абсолютной погрешности из-	±0,5	±0,5	
мерений температуры, °С			
Пределы допускаемой относительной погрешности			
вычислений объема безводного спирта, приведенного			
к 20 °C, %, в диапазоне концентраций (крепости):			
менее 9 %	±4,0		
от 9 до 20 %	±3,0	-	
от 20 до 38 %	±1,5		
от 38 до 75 %	±0,8		
свыше 75 %	±0,6		
Максимальное рабочее давление, МПа	4,0	4,0	
Диапазон температур измеряемой среды, °С	от -40 до +40	от -40 до +200	
Рабочие условия эксплуатации:			
- температура окружающей среды, °С:			
а) расходомер	от - 40 до +60		
б) модуль измерительный	от +5 до +40		
- относительная влажность воздуха, %	от 30 до 80		
- атмосферное давление, кПа	от 86 до 106,7		
Напряжение питания от сети переменного тока часто-	220 +22		
той (50±1) Гц, В		33	
Количество каналов измерений	до 8		
Максимальное удаление расходомера(ов) от шкафа	1200		
автоматики, м			
Максимальное удаление ПК от шкафа автоматики, м	5000		
Средний срок службы, лет, не менее	1	10	

^{* -} в зависимости от погрешности применяемых в составе системы расходомеров.

^{** -} для систем, поверка которых проведена имитационным методом, в состав которых входят электромагнитные расходомеры Promag и Симаг 11-М.

Знак утверждения типа

наносится на титульный лист паспорта и на модуль измерительный типографским способом.

Комплектность средства измерений

Таблица 3

Наименование	Количество	Примечание
Система измерительная "ПОТОК АЛЬФА ПЛЮС"		
в составе:		
- модуль измерительный	1 шт.	
- преобразователь(и) расхода Promag, Promass, Micro Mo-	от 1 до	В соответствии с
tion, Prowirl или Симаг	8 шт.	заказом
- термометр сопротивления Pt100	от 1 до	В соответствии с
	8 шт.	заказом
Комплект документации:		
- паспорт АФЕС.407301.001 ПС	1 экз.	
- руководство по эксплуатации АФЕС.407301.001 РЭ	1 экз.	
- эксплуатационная документация на функциональные	1 экз.	Согласно комплек-
устройства, входящие в комплект системы		ту поставки каждо-
		го изделия
- методика поверки МП 208-024-2017	1 экз.	По заказу

Поверка

осуществляется по документу МП 208-024-2017 "ГСИ. Системы измерительные "ПОТОК АЛЬФА ПЛЮС". Методика поверки", утвержденному ФГУП "ВНИИМС" 19.06.2017 г.

Основные средства поверки:

- весы платформенные электронные по ГОСТ 29329-92, наибольший предел взвешивание 3000 кг, класс точности III (средний);
 - мерники 2 разряда, номинальная вместимость от 100 до 2000 дм³.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится в свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к системам измерительным "ПОТОК АЛЬФА ПЛЮС"

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

АФЕС.407301.001 ТУ. Система измерительная "ПОТОК АЛЬФА ПЛЮС". Технические условия.

Изготовитель

Общество с ограниченной ответственностью "Инженерное бюро Альфа"

(ООО "Инженерное бюро Альфа")

ИНН 7705902307

Адрес: 119334, Москва, 5-й Донской проезд, д. 15, стр. 1

Тел./факс: +7 499 995-22-34, +7 495 955-51-51

E-mail: info@ib-a.ru

Испытательный центр

Федеральное государственное унитарное предприятие "Всероссийский научноисследовательский институт метрологической службы" (ФГУП "ВНИИМС")

Адрес: 119361, г. Москва, ул. Озерная, д.46 Тел./факс: (495)437-55-77 / 437-56-66 E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации Φ ГУП "ВНИИМС" по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. « ___ » _____ 2017 г.