ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт расходометрии»

Государственный научный метрологический центр

ФГУП «ВНИИР»

УТВЕРЖДАЮ

Заместитель директора по развитию

ФГУП «ВНИИР»

А.С.Тайбинский

2017 г.

ИНСТРУКЦИЯ

Государственная система обеспечения единства измерений

Установка поверочная для счетчиков газа У-659

Методика поверки МП 0551-13-2017

Начальник отдель НИО-13

А.И. Горчев

Тел. отдела: (843)272-11-24

1 ВВОДНАЯ ЧАСТЬ

Настоящая инструкция распространяется на установку поверочную для счетчиков газа У-659 (далее - установка) и устанавливает последовательность и методику ее первичной и периодической поверок.

Установка предназначена для воспроизведения заданного объема и объемного расхода газа.

Интервал между поверками – 2 года..

2 ОПЕРАЦИИ ПОВЕРКИ

2.1 При проведении поверки должны быть выполнены операции согласно таблице 1. Таблица 1

	Номер	Проведение операции при:				
Наименование операции	пункта методики поверки	первичной поверке	периодической поверке			
1	2	3	4			
Подготовка к поверке	6	+	+			
Внешний осмотр	7.1	+	+			
Проверка герметичности	7.2	+	+			
Опробование	7.3	+	+			
Определение метрологических характеристик установки	7.4	+	+			
Оформление результатов поверки	8	+	+			

3 СРЕДСТВА ПОВЕРКИ

- 3.1 При поверке установки должны быть применены следующие средства поверки и вспомогательное оборудование:
- государственный первичный эталон единиц объемного и массового расходов газа ГЭТ 118-2013, диапазон воспроизведения единиц объемного расхода газа от 0,003 до 16000 $\text{м}^3/\text{ч}$, СКО 3,5·10⁻⁴ ÷ 5·10⁻⁴, НСП 4·10⁻⁴ (калибровка эталонных критических сопел);
- эталоны и средства измерений в соответствии с методиками поверки на соответствующие средства измерений, входящие в состав установки (проверка наличия свидетельств о поверке).

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1. При поверке установки необходимо соблюдать меры предосторожности в соответствии с требованиями правил безопасности, которые установлены на данном объекте.
- 4.2 К проведению поверки допускаются лица, изучившие данную инструкцию, эксплуатационную документацию на установки, имеющие опыт поверки средств измерений расхода, а также прошедшие инструктаж по технике безопасности в установленном порядке.
- 4.3 Все измерительные приборы должны иметь изолированные цепи по входу и выходу от их цепей питания.
- 4.4 Необходимо соблюдать «Правила технической эксплуатации электроустановок потребителей», «Правила техники безопасности при эксплуатации электроустановок потребителей» (ПТЭ и ПТБ) при работе на электроустановках напряжением до 1000 В.

5 УСЛОВИЯ ПОВЕРКИ

- 5.1 При проведении поверки должны соблюдаться следующие условия, если они не оговорены специально:
 - температура окружающего воздуха от плюс 10 до плюс 30 °C;

- относительная влажность окружающего воздуха от 30 до 80%;
- атмосферное давление от 84 до 106,7 кПа;
- 5.2 Параметры поверочной среды (воздуха):
- температура от плюс 10 до плюс 30 °C;
- абсолютное давление от 84 до 106,7 кПа;
- относительная влажность от 10 до 80%;
- 5.3 Изменение температуры и давления поверочной среды в процессе поверки не более ± 1 °C и ± 1 кПа за время одной операции испытаний.

6 ПОДГОТОВКА К ПОВЕРКЕ

- 6.1 Перед проведением поверки установки в целом, необходимо предварительно провести поверку входящего в комплект установки измерительного оборудования.
 - 6.2 При подготовке к поверке выполняют следующие работы:
 - проверку выполнения условий п.4 и п.5 настоящей инструкции;
 - подготовку установки к работе согласно эксплуатационной документации.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

- 7.1 Внешний осмотр.
- 7.1.1 Перед проведением внешнего осмотра установки должно быть установлено наличие следующей документации:
 - 1) свидетельство о поверке установки (при периодической поверке);
 - 2) свидетельства о поверке всех средств измерений, входящих в состав установки;
 - 3) сертификат калибровки на эталонные критические сопла (далее КС);
 - 4) паспорт;
 - 5) руководство по эксплуатации.
 - 7.1.2 При внешнем осмотре должно быть установлено:
 - комплектность установки;
- отсутствие механических повреждений элементов конструкции установки, отсутствии ржавчины на элементах конструкции;
- отсутствие видимых разрушений и сколов на лакокрасочных и гальванических покрытий деталей и агрегатов установки;
- отсутствие механических повреждений кабелей и соединительных трубопроводов;
- отсутствие визуально обнаруживаемых дефектов (в виде забоин, раковин, уступов) и загрязнений в области дозвуковой части и критического сечения КС.
 - 7.2 Проверка герметичности.
 - 7.2.1 Проверка герметичности шаровых кранов критических сопел.

Заглушить входной патрубок установки, предназначенный для подсоединения счетчиков. Шаровые краны критических сопел должны быть закрыты. Включить вакуумный насос. При достижении давления -0,05 МПа (-0,5 кгс/см²) в выходном коллекторе по показаниям вакуумметра ДВ2010Сг вакуумный насос отключают. Наблюдают за показаниями мановакуумметра двухтрубного МВ-2Ш-6000, установленного во входном коллекторе установки. Шаровые краны критических сопел считаются герметичными, если изменение давления по мановакуумметру в течение 3 минут не превышает 30 Па (3 мм вод. ст.).

7.2.2 Проверка герметичности измерительного тракта.

Открыть шаровый кран критического сопла с минимальным расходом до создания перепада 5000 Па (510 мм вод. ст.) по показаниям мановакуумметра, затем закрыть шаровый кран критического сопла и наблюдать за показаниями мановакууметра.

Установка считается герметичной, если изменение давления в течение 3 минут не превышает 30 Па (3 мм вод. ст.).

7.3 Опробование

При проверке критического режима на минимальном расходе собирают измерительную магистраль без установки в нее поверяемого средства. Включают вакуумный насос, устанавливают минимальное значение объемного расхода. Фиксируют величину разрежения (Рр) по показаниям вакуумметра и атмосферного давления по показаниям термогигрометра ИВА-6Н-Д.

При проверке критического режима на максимальном расходе собирают измерительную магистраль без установки в нее поверяемого средства. Включают вакуумный насос, устанавливают максимальное значение объемного расхода. Фиксируют величину разрежения (Рр) по показаниям вакуумметра и атмосферного давления (Ратм) по показаниям термогигрометра ИВА-6Н-Д.

Определяют степень дросселирования критического сопла по формуле

$$\mathcal{E} = \frac{PamM}{PamM + PD} \tag{1}$$

Значения Ратм и Рр в формуле должны быть выражены в одних и тех же единицах величин.

Результаты опробования считаются положительными, если степень дросселирования критического сопла на минимальном расходе составляет не более 0,67, а на максимальном расходе не более 0,8.

- 7.4 Определение метрологических характеристик установки.
- 7.4.1 Определение относительной погрешности установки при воспроизведении объемного расхода и объема.

Относительную погрешность установки $\delta_{\Im V}$ при воспроизведении объемного расхода и объема определяют по формуле

$$\delta_{\mathcal{I}y} = \sqrt{\delta_{\kappa c}^2 + 0.5\delta_T^2 + \left(\frac{\Delta P}{Pa}\right)^2 \delta_{Pa}^2 + \left(\frac{\Delta P}{Pa}\right)^2 \delta_{\Delta P}^2 + \delta_{\tau}^2 + \delta_{f\varphi}^2}, \%$$
 (2)

где $\delta_{\kappa c}$ — относительная расширенная неопределенность калибровки эталонного критического сопла (определяют по сертификату о калибровке), %;

 δ_T —относительная погрешность измерения температуры на входе критического сопла, %;

 $\delta_{\it Pa}$ — относительная погрешность измерения атмосферного давления, %;

 $\delta_{\Delta P}$ — относительная погрешность измерения разности давлений на входе критического сопла и в точке отбора давления на линии поверяемого счетчика, %;

 δ_{τ} – относительная погрешность измерения времени поверки, %;

 $\delta_{f\varphi}$ – относительная погрешность определения поправочного коэффициента на влажность воздуха, %;

 ΔP — разность давлений на входе критического сопла и в точке отбора давления на линии поверяемого счетчика, кПа;

Pa — атмосферное давление воздуха (принимается равному минимальному атмосферному давлению воздуха при эксплуатации установки и составляет 84 кПа), кПа.

7.4.1.1 Относительную погрешность измерения температуры на входе критического сопла δ_T определяют по формуле

$$\delta_T = \frac{\Delta t}{\tau} 100, \% \tag{3}$$

где Δt — абсолютная погрешность при измерении температуры воздуха термогигрометра ИВА-6H-Д, °C;

T — термодинамическая температура воздуха на входе в критическое сопло (принимается равной минимальной температуре воздуха при эксплуатации установки и составляет 283,15 K), K.

7.4.1.2 Относительную погрешность измерения атмосферного давления δ_{Pa} определяют по формуле

$$\delta_{Pa} = \frac{\Delta Pa}{Pa} 100, \% \tag{4}$$

где ΔPa – абсолютная погрешность при измерении атмосферного давления термогигрометра ИВА-6H-Д, %;

Pa — атмосферное давление воздуха (принимается равному минимальному атмосферному давлению воздуха при эксплуатации установки и составляет 84 кПа), кПа:

7.4.1.3 Относительную погрешность измерения разности давлений на входе критического сопла и в точке отбора давления на линии поверяемого счетчика $\delta_{\Delta P}$ определяют по формуле

$$\delta_{\Delta P} = \frac{\Delta_{\Delta P}}{\Delta P} 100, \% \tag{5}$$

где $\Delta_{\Delta P}$ – погрешность мановакуумметра двухтрубного MB-2Ш-6000, Па;

 ΔP — разность давлений на входе критического сопла и в точке отбора давления на линии поверяемого счетчика, кПа;

7.4.1.4 Относительную погрешность измерения времени поверки $\delta_{ au}$ определяют по формуле

$$\delta_{\tau} = \frac{\Delta_{\tau}}{\tau} 100, \% \tag{6}$$

где Δ_{τ} – погрешность секундомера электронного Интеграл C-01, c;

 τ — время проведения поверки счетчика на установке (принимается равным минимальному периоду времени поверки счетчика и составляет 100 c), c;

7.4.1.5 Относительная погрешность определения поправочного коэффициента на влажность воздуха $\delta_{f\varphi}$ определяется на основании принятого метода ввода поправки на влажность. При использовании таблицы поправочных коэффициентов (см. Приложение A) относительную погрешность определения поправочного коэффициента $\delta_{f\varphi}$ определяют по формуле

$$\delta_{f\varphi} = \sqrt{(0,002)^2 \delta_T^2 + (0,004)^2 \delta_{Pa}^2 + (0,002)^2 \delta_{\varphi}^2}, \%$$
 (7)

$$\delta_{\varphi} = \frac{\Delta_{\varphi}}{\varphi} 100, \% \tag{8}$$

где δ_{arphi} – относительная погрешность при измерении относительной влажности ;

 Δ_{φ} — абсолютная погрешность при измерении относительной влажности термогигрометра ИВА-6Н-Д, %;

 φ — относительная влажность воздуха (принимается равной минимальной относительной влажности воздуха при эксплуатации установки и составляет 10 %), %.

Результаты поверки считаются положительными, если относительная погрешность установки при воспроизведении объемного расхода и объема не превышает \pm 0,5 %.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1 Результаты поверки оформляются протоколами произвольной формы.
- 8.2 При положительных результатах поверки установку признают годной к применению, оформляют свидетельство о поверке в соответствии с Приказом Министерства промышленности и торговли РФ от 2 июля 2015 г. №1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».
- 8.3 Если установка по результатам поверки признана непригодной к применению, свидетельство о поверке аннулируется и выписывают извещение о непригодности к применению в соответствии с Приказом Министерства промышленности и торговли РФ от 2 июля 2015 г. №1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».

Приложение А

Поправочные коэффициенты на влажность воздуха

Величина эталонного значения объема задаваемого установкой определяется по результатам косвенных измерений и выражается следующей формулой

$$V_e = Q_{20,60} \tau \sqrt{\frac{T}{293,15}} \left(1 - \frac{\Delta P}{P} \right) \frac{1}{K_{t,\varphi}}$$
 (A.1)

где

 $Q_{20.60}$ — объемный расход, задаваемый критическим соплом при температуре 20 °C, и относительной влажности 60%, м 3 /ч;

au – время в течение которого эталонный расход пропускался через поверяемый (калибруемый) счетчик, час;

T – абсолютная температура воздуха, К (T = 273,15+t);

 ΔP — разность давлений воздуха между критическим соплом и поверяемым средством измерений, кПа;

P – абсолютное давление воздуха перед критическим соплом, кПа;

 $K_{t,\sigma}$ – поправочный коэффициент на влажность воздуха (определяется по таблице A.1)

Таблица А.1 – Поправочные коэффициенты на влажность воздуха

$K_{\iota,\varphi}$			Температура, °С																			
		10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Относительная влажность, %	20	1,00198	1,00195	1,00191	1,00188	1,00185	1,00181	1,00176	1,00173	1,00169	1,00165	1,00160	1,00156	1,00152	1,00144	1,00135	1,00130	1,00124	1,00116	1,00108	1,00090	1,00072
	25	1,00187	1,00183	1,00179	1,00175	1,00171	1,00166	1,00161	1,00156	1,00151	1,00146	1,00140	1,00133	1,00126	1,00118	1,00110	1,00098	1,00095	1,00086	1,00076	1,00062	1,00047
	30	1,00177	1,00172	1,00167	1,00162	1,00157	1,00152	1,00146	1,00140	1,00133	1,00127	1,00120	1,00111	1,00103	1,00094	1,00085	1,00075	1,00066	1,00055	1,00044	1,00033	1,00022
	35	1,00166	1,00161	1,00155	1,00150	1,00144	1,00137	1,00130	1,00123	1,00115	1,00108	1,00100	1,00090	1,00080	1,00070	1,00059	1,00048	1,00037	1,00025	1,00012	0,99999	0,99986
	40	1,00156	1,00150	1,00143	1,00137	1,00130	1,00122	1,00114	1,00106	1,00097	1,00081	1,00080	1,00069	1,00057	1,00046	1,00034	1,00029	1,00008	0,99994	0,99980	0,99965	0,99950
	45	1,00146	1,00138	1,00130	1,00123	1,00116	1,00105	1,00093	1,00083	1,00074	1,00067	1,00060	1,00050	1,00039	1,00023	1,00007	0,99994	0,99980	0,99965	0,99950	0,99930	0,99915
	50	1,00135	1,00127	1,00118	1,00110	1,00102	1,00087	1,00072	1,00062	1,00051	1,00045	1,00040	1,00031	1,00012	0,99996	0,99980	0,99970	0,99950	0,99935	0,99920	0,99900	0,99880
	55	1,00125	1,00116	1,00106	1,00097	1,00089	1,00076	1,00062	1,00051	1,00039	1,00030	1,00020	1,00003	0,99986	0,99970	0,99960	0,99940	0,99920	0,99900	0,99880	0,99860	0,99840
	60	1,00114	1,00104	1,00094	1,00085	1,00075	1,00064	1,00052	1,00039	1,00026	1,00013	1,00000	0,99980	0,99960	0,99945	0,99930	0,99910	0,99890	0,99865	0,99840	0,99820	0,99800
	65	1,00103	1,00093	1,00082	1,00072	1,00061	1,00049	1,00036	1,00022	1,00008	0,99994	0,99980	0,99960	0,99940	0,99930	0,99910	0,99890	0,99860	0,99840	0.99810	0.99780	0,99755
	70	1,00093	1,00082	1,00070	1,00059	1,00047	1,00034	1,00021	1,00006	0,99990	0,99975	0,99960	0,99940	0,99920	0,99900	0,99880	0.99860	0,99830	0,99810	0,99780	0,99755	0,99730
	75	1,00083	1,00070	1,00057	1,00046	1,00033	1,00020	1,00006	0,99990	0,99970	0,99955	0,99940	0,99920	0,99900	0,99880	0,99855	0.99830	0.99810	0,99780	0,99750	0,99720	0.99690
	80	1,00072	1,00058	1,00045	1,00032	1,00019	1,00005	0,99990	0,99975	0,99950	0,99935	0,99920	0,99900	0,99880	0,99855	0,99830	0,99810	0,99780	0,99750	0,99720	0.99685	0.99650
	85	1,00062	1,00048	1,00034	1,00019	1,00005	0,99990	0,99975	0,99955	0,99935	0,99918	0,99900	0.99880	0,99860	0,99830	0,99800	0,99780	0,99750	0,99720	0,99685	0,99650	0,99620
	90	1,00051	1,00037	1,00023	1,00007	0,99990	0,99975	0,99960	0,99940	0,99920	0,99900	0,99880	0,99855	0,99830	0,99810	0,99780	0,99750	0,99720	0,99680	0,99650	0,99620	0,99590