ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «ТЗ СИБГАЗАППАРАТ»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «ТЗ СИБГАЗАППАРАТ» (далее по тексту - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень - измерительно-информационные комплексы (далее - ИИК), которые включают в себя трансформаторы тока (далее - ТТ) по ГОСТ 7746-2001, трансформаторы напряжения (далее - ТН) по ГОСТ 1983-2001 и счетчики активной и реактивной электроэнергии по ГОСТ Р 52323-2005 в режиме измерений активной электроэнергии и по ГОСТ Р 52425-2005 в режиме измерений реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблице 2.

2-й уровень - информационно-вычислительный комплекс (далее - ИВК), включающий в себя каналообразующую аппаратуру, сервер баз данных (далее - сервер БД) АИИС КУЭ, автоматизированные рабочие места персонала (АРМ), устройство синхронизации времени УСВ-3 (далее - УСВ-3), и программное обеспечение (далее - ПО) ПК «Энергосфера».

ИВК предназначен для автоматизированного сбора и хранения результатов измерений, состояния средств измерений, подготовки и отправки отчетов в АО «АТС», АО СО «ЕЭС».

Измерительные каналы (далее - ИК) состоят из двух уровней АИИС КУЭ.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков по беспроводным каналам связи поступает на верхний уровень системы, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации, ее накопление и передача, оформление отчетных документов. Передача информации в заинтересованные организации осуществляется от сервера БД с помощью электронной почты по выделенному каналу связи по протоколу ТСР/IP.

АИИС КУЭ имеет систему обеспечения единого времени (COEB), которая охватывает уровень ИИК и ИВК. АИИС КУЭ оснащена УСВ-3, принимающим сигналы точного времени от спутников глобальной системы позиционирования (GPS). Контроль времени в часах счетчиков АИИС КУЭ автоматически выполняет ИВК, при каждом сеансе опроса (один раз в 30 минут), корректировка часов счетчиков выполняется автоматически в случае расхождения времени часов в счетчике и ИВК на величину более ± 2 с. Корректировка часов ИВК выполняется автоматически, от УСВ-3. Корректировка часов ИВК происходит ежесекундно. Погрешность часов компонентов АИИС КУЭ не превышает ± 5 с/сут.

Факты коррекции времени с фиксацией даты и времени до и после коррекции часов счетчика электроэнергии, отражаются в его журнале событий.

Факты коррекции времени с фиксацией даты и времени до и после коррекции часов указанных устройств, отражаются в журнале событий сервера.

Программное обеспечение

В АИИС КУЭ используется ПО ПК «Энергосфера» версии 7.1, в состав которого входят модули, указанные в таблице 1. ПО ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО ПК «Энергосфера».

Таблица 1 - Метрологические значимые модули ПО

Tuotingu T Metponorn teetate ona missie modjim 110				
Идентификационные признаки	Значение			
Идентификационное наименование ПО	ПК «Энергосфера»			
	Библиотека pso_metr.dll			
Номер версии (идентификационный номер) ПО	1.1.1.1			
Цифровой идентификатор ПО	CBEB6F6CA69318BED976E08A2BB7814B			
Алгоритм вычисления цифрового идентификатора ПО	MD5			

Метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2, нормированы с учетом ПО.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав 1-го уровня измерительных каналов АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 - Состав 1-го уровня измерительных каналов АИИС КУЭ и их основные метрологические характеристики

de	Измерительные компоненты		Вид	Метрологически	е характеристики ИК		
Номер ИК	Наименование ИК	TT	TH	Счётчик	электро- энергии	Основная погрешность, %	Погрешность в рабочих условиях, %
	РП-10 кВ «Станция»,	ТЛМ-10	НАМИ-10	СЭТ-	активная	±0,9	±3,0
1	РУ-10 кВ, 2С-10,	Кл. т. 0,5	Кл. т. 0,2	4TM.03M.08			
	яч. №17, ф. Сибгазаппарат-2	600/5	10000/100	Кл. т. 0,2S/0,5	реактивная	$\pm 2,4$	±5,2
2	РП-10 кВ «Станция», РУ-10 кВ, 1С-10, яч. № 4, ф. Сибгазаппарат-1	ТОЛ-10 Кл. т. 0,5 600/5 ТЛМ-10 Кл. т. 0,5 600/5	НАМИ-10 Кл. т. 0,2 10000/100	СЭТ- 4ТМ.03М.08 Кл. т. 0,2S/0,5	активная	±0,9 ±2,4	±3,0 ±5,2
3	ПС 110/10 кВ «Химфарм», ЗРУ-10 кВ, 1 с.ш., яч. № 15, ф. Сибгаз-1	ТОЛ-СЭЩ-10 Кл. т. 0,5 400/5	НАМИТ-10-2 Кл. т. 0,5 10000/100	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	активная реактивная	±1,1 ±2,7	±3,0 ±5,3
4	ПС 110/10 кВ «Химфарм», ЗРУ-10 кВ, 2 с.ш., яч. № 16, ф. Сибгаз-2	ТОЛ-СЭЩ-10 Кл. т. 0,5 400/5	НАМИТ-10-2 Кл. т. 0,5 10000/100	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	активная реактивная	±1,1 ±2,7	±3,0 ±5,3
5	КТП-10/0,4 кВ ДНТ «Приозерное»,	ТОП-0,66 Кл. т. 0,5S	-	ПСЧ- 4ТМ.05МК.04	активная	±1,0	±3,7
1	РУ-0,4 кВ	100/5		Кл. т. 0,5Ѕ/1,0	реактивная	$\pm 2,4$	±6,5

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 5. Погрешность в рабочих условиях указана для $\cos j = 0.8$ инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК № 1 5 от минус 30 до плюс 40 °C.
- 6. Допускается замена измерительных трансформаторов, счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2.

Основные технические характеристики ИК приведены в таблице 3.

Таблица 3 - Основные технические характеристики ИК

1аолица 3 - Основные технические характеристики ИК	n
Наименование характеристики	Значение
Количество измерительных каналов	5
Нормальные условия:	
параметры сети:	
- напряжение, % от U _{ном}	от 98 до 102
- ток, % от I _{ном}	от 100×до 120
- частота, Гц	от 49,85 до 50,15
- коэффициент мощности cosj	0,9
- температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение, % от U _{ном}	от 90 до 110
- ток, % от I _{ном}	от 2 до 120
- коэффициент мощности	от 0,5 инд. до 0,8 емк.
- частота, Гц	от 49,6 до 50,4
- температура окружающей среды для ТТ и ТН, °С	от -40 до +70
- температура окружающей среды в месте расположения	
электросчетчиков, °С	от -40 до +60
- температура окружающей среды в месте расположения	
для аппаратуры передачи и обработки данных, °С	от +10 до +30
Надежность применяемых в АИИС КУЭ компонентов:	
Электросчетчики:	
- среднее время наработки на отказ, ч, не менее:	
- CЭT-4TM.03M.08	140000
- СЭТ-4ТМ.03М, ПСЧ-4ТМ.05МК.04	165000
- среднее время восстановления работоспособности, ч	2
Сервер:	
- среднее время наработки на отказ, ч, не менее	70000
- среднее время восстановления работоспособности, ч	1
Глубина хранения информации	
Электросчетчики:	
- тридцатиминутный профиль нагрузки в двух	
направлениях, сутки, не менее	45
- при отключении питания, лет, не менее	10
Сервер:	
- хранение результатов измерений и информации	
состояний средств измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;

- журнал сервера БД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и сервере БД;
 - пропадание и восстановление связи со счетчиком.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) ООО «ТЗ СИБГАЗАППАРАТ» типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 - Комплектность АИИС КУЭ

Наименование	Тип	Рег. №	Количество, шт.
1	2	3	4
Трансформатор тока	ТЛМ-10	48923-12	3
Трансформатор тока	ТОЛ-10	47959-16	1
Трансформатор тока	ТОЛ-СЭЩ-10	32139-11	6
Трансформатор тока	ТОП-0,66	15174-06	3
Трансформатор напряжения	НАМИ-10	11094-87	2
Трансформатор напряжения	НАМИТ-10-2	18178-99	2
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.03М.08	36697-12	2
Счётчик электрической энергии многофункциональный	CЭT-4TM.03M	36697-12	2

Продолжение таблицы 4

1	2	3	4
Счётчик электрической энергии многофункциональный	ПСЧ-4ТМ.05МК.04	46634-11	1
Программное обеспечение	ПК «Энергосфера»	-	1
Устройство синхронизации времени	УСВ-3	51644-12	1
Методика поверки	МП 206.1-101-2017	-	1
Паспорт-Формуляр	-	-	1

Поверка

осуществляется по документу МП 206.1-101-2017 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «ТЗ СИБГАЗАППАРАТ». Измерительные каналы. Методика поверки», утвержденному ФГУП «ВНИИМС» 31 марта 2017 г.

Основные средства поверки:

- трансформаторов тока в соответствии с ГОСТ $8.217-2003 \ \mbox{«}\Gamma \mbox{СИ}$. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009. «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений без отключения цепей»;
- по МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений без отключения цепей»;
- счетчиков СЭТ-4ТМ.03М.08 по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145 РЭ1, согласованному с ГЦИ СИ ФБУ «Нижегородский ЦСМ» «04» декабря 2007 г.;
- счетчиков СЭТ-4ТМ.03М по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145 РЭ1, согласованному с ГЦИ СИ ФБУ «Нижегородский ЦСМ» «04» мая 2012 г.;
- счетчиков ПСЧ-4ТМ.05МК.04 по документу «Счетчик электрической энергии ПСЧ-4ТМ.05МК. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.167РЭ1, согласованному с ГЦИ СИ ФБУ «Нижегородский ЦСМ» 21 марта 2011 г.;
- УСВ-3 по документу «Инструкция. Уствройства синхронизации времени УСВ-3. Методика поверки. ВЛСТ.240.00.000МП», утвержденному руководителем ГЦИ СИ ФГУП «ВНИИФТРИ» в $2012~\Gamma$.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04;
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до плюс 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100 %, дискретность 0,1%;
- миллитесламетр портативный универсальный ТПУ: диапазон измерений магнитной индукции от 0.01 до 19.99 мТл.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих - кодом и (или) оттиском клейма поверителя.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «ТЗ СИБГАЗАППАРАТ», аттестованной ФГУП «ВНИИМС», аттестат об аккредитации № RA.RU.311787 от 02.08.2016 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «ТЗ СИБГАЗАППАРАТ»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «Спецэнергопроект»

(ООО «Спецэнергопроект»)

ИНН 7722844084

Адрес: 111024, г. Москва, ул. Авиамоторная, д. 50, к. 2

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научно исследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес:119361, г. Москва, ул. Озерная, д. 46

Телефон: +7 (495) 437-55-77 Факс: +7 (495) 437-56-66 E-mail: <u>office@vniims.ru</u> Web-сайт: www.vniims.ru

Аттестат аккредитации Φ ГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «___ » _____ 2017 г.