ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Комплексы программно-технические DEWE2

Назначение средства измерений

Комплексы программно-технические DEWE2 (далее - комплексы) предназначены для измерительных преобразований аналоговых сигналов напряжения и силы постоянного и переменного электрического тока, сопротивления постоянному электрическому току, сигналов от термопар и термопреобразователей сопротивления, измерительных преобразований периода, частоты следования, ширины и скважности импульсных сигналов, а также преобразований цифрового сигнала в сигналы напряжения и силы постоянного электрического тока.

Описание средства измерений

Принцип действия комплексов основан на аналого-цифровом преобразовании (АЦП) сигналов напряжения и силы постоянного и переменного электрического тока, сопротивления электрическому току, сигналов от термопар и термопреобразователей сопротивления, а также цифроаналоговом преобразовании (ЦАП) в сигналы напряжения и силы постоянного электрического тока.

Комплексы имеют модульную структуру и содержат:

- модули аналогового ввода/вывода семейств TRION и xPAD, обеспечивающие измерение и формирование аналоговых сигналов;
- модули аналогового ввода PAD-CB8, использующиеся совместно с модулем xPAD2-TH8-P и обеспечивающие прием сигналов от термопар и термопреобразователей сопротивления и преобразование их в напряжение постоянного тока;
- неизмерительные модули (модули обработки дискретных сигналов, интерфейсные модули и др.)

Конструктивно модули семейства TRION, а также неизмерительные модули объединяются в едином корпусе (шасси). Модули ввода/вывода семейства хРАD имеют собственный корпус и подключаются к шасси при помощи интерфейсных модулей. Модули PAD-CB8 также имеют собственный корпус и подключаются к шасси при помощи модуля хРАD2-TH8-P.

Модули ввода/вывода выполняют следующие функции:

- АЦП сигналов напряжения постоянного электрического тока в различных поддиапазонах внутри диапазона от минус 1000 до плюс 1000 В, а также АЦП мгновенных значений сигналов напряжения переменного электрического тока в различных поддиапазонах внутри диапазона от минус 1000 до 1000 В частотой от 0,0001 Гц до 100 кГц;
- АЦП сигналов силы постоянного электрического тока в диапазонах от 0 до 20 мА, от минус 20 до плюс 20 мА, от минус 30 до плюс 30 мА, а также АЦП мгновенных значений сигналов силы переменного электрического тока в диапазонах от минус 10 до 10 мА, от минус 20 до 20 мА, от минус 50 до 50 мА, от минус 100 до 100 мА частотой от 0,0001 Γ ц до 100 к Γ ц;
- АЦП сигналов сопротивления электрическому току в различных поддиапазонах внутри диапазона от 0 до 1000 кОм;
- АЦП сигналов от термопар с номинальными статическими характеристиками по ГОСТ 8.585-2001;
- АЦП сигналов от термопреобразователей сопротивления с номинальными статическими характеристиками по ГОСТ 6651-2009;
- ЦАП сигналов напряжения постоянного электрического тока в диапазонах от минус 5 до плюс 5 В и от минус 10 до плюс 10 В, от 0 до 5 В, от 0 до 10 В;

- ЦАП сигналов силы постоянного электрического тока в диапазонах от 0 до 20 мA, от 4 до 20 мA;
- обеспечение электрического питания датчиков, в т.ч. пьезоэлектрических акселерометров класса IEPE, которые могут подключаться к модулям (датчики в состав комплексов не входят).

Обозначение модулей семейства TRION (за исключением модулей TRION-BASE, TRION-CNT и TRION-TIMING) имеет следующий вид:

TRION-XXYY-ZZZ-AA-BB, где

- ХХ наименьшая разрядность АЦП или ЦАП (16 16 бит, 24 24 бит);
- YY наибольшая частота опроса (02 204,8 кГц, 03 250 кГц, 20 2 МГц, 28 2,8 МГц);
- ZZZ модификация модуля (существуют модификации MULTI, ACC, LV, V, dSTG, dACC, отличающиеся метрологическими и техническими характеристиками);
 - АА число измерительных каналов модуля;
- ВВ применяемый на плате разъем под входной сигнал. Данный параметр не влияет на метрологические характеристики модуля, если отдельно не обозначено.

Обозначение модулей xPAD имеет следующий вид:

xPADy-ZZZ-AA, где

- х интерфейс (С интерфейс CAN, Е интерфейс RS-485);
- у наибольшая частота опроса (2 12 Гц, 3 100 Гц);
- ZZZ тип измеряемого сигнала (существуют модификации TH8, V8, RTD8, LA8, AO4, отличающиеся метрологическими и техническими характеристиками);
- AA индивидуальные особенности каждого модуля и может отсутствовать. Данное обозначение является метрологически значимым для модулей типов TH8 и CB8, где оно указывает на тип термопары, сигнал от которой воспринимает модуль (может принимать значения K, J, T, R, S, N, E, L, C, B и UNIVERSAL).

Обозначение модулей PAD-CB8 имеет следующий вид:

PAD-CB8-ZZZ-AA, где

- ZZZ обозначает тип термопары, сигнал от которой воспринимает модуль (может принимать значения K, J, T, R, S, N, E, L, C, B и UNIVERSAL) или указывает, что модуль принимает сигнал от термопреобразователей сопротивления (значение RTD);
 - АА индивидуальные особенности каждого модуля и может отсутствовать.
- В зависимости от типа шасси имеются три различных исполнения комплексов (исполнение не влияет на метрологические характеристики оборудования):
- в виде базового блока. Данное исполнение требует подключения внешних монитора и клавиатуры для отображения измерительной информации, а также настройки комплексов.
- в виде законченного устройства. Данное исполнение имеет встроенные монитор, сенсорную панель и клавиатуру или сенсорный экран (вариант TrendCorder), которые предназначены для настройки комплексов, а также отображения измерительной информации;
- в виде блока расширения. Данное исполнение не имеет встроенного процессорного модуля и предназначено для подключения дополнительных модулей к базовому блоку и законченному устройству или прямого подключения посредством шины PCI Express, USB Ethernet или Thunderbolt к персональному компьютеру с установленным программным обеспечением для обработки и отображения измерительной информации.

Питание комплексов может осуществляться от сети переменного или постоянного тока. Кроме того, предусмотрена опциональная возможность электропитания от аккумуляторных батарей.

Внешний вид комплексов представлен на рисунках 1-5.

Рисунок 1 - Внешний вид комплексов в исполнении базового блока

Рисунок 2 - Внешний вид комплексов в исполнении законченного устройства

Рисунок 3 - Внешний вид комплексов в исполнении блока расширения

Рисунок 4 - Внешний вид модулей xPAD

Рисунок 5 - Внешний вид модулей PAD-CB8

Пломбирование комплексов программно-технических DEWE2 не предусмотрено.

Программное обеспечение

В состав программного обеспечения (ПО) комплексов входят:

- встроенное ПО модулей ввода/вывода семейств TRION и xPAD;
- ПО верхнего уровня (ПО ВУ).

Встроенное ПО модулей ввода/вывода является метрологически значимым, устанавливается в энергонезависимую память модулей при изготовлении. Метрологические характеристики комплексов нормированы с учетом влияния на них встроенного ПО. Конструкция модулей исключает возможность несанкционированного доступа к встроенному ПО и изменения измерительной информации.

ПО ВУ предназначено для конфигурирования комплексов, анализа измерительной информации, а также отображения измерительной информации в единой шкале времени в удобном для пользователя виде (численном, графическом, в виде индикаторов, мнемосхем и др.)

Для защиты ПО комплексов и измерительной информации от несанкционированного доступа предусмотрен многоступенчатое разграничение прав доступа. Защита реализована с помощью различных паролей для каждого из уровней доступа к ПО.

Обновление встроенного ПО производится сразу после обновления ПО ВУ для обеспечения совместимости оператором, имеющим права администратора. Для этого оператор подключает все необходимые модули и выбирает соответствующий пункт в меню ПО ВУ.

Защита ΠO от непреднамеренных и преднамеренных изменений соответствует уровню «средний» по P 50.2.077-2014.

Идентификационные данные ПО приведены в таблицах 2-3.

Таблица 2а - Илентификационные ланные программного обеспечения молулей ввола/вывола

	тідентификационные данные программиного осепе іспил модулен ввода вывода				
Идентификационные	Значения				
данные (признаки)					
Идентификационное	TRION-	TRION-	TRION-	TRION-	TRION-
наименование ПО	2402-dACC	1620-ACC	1620-LV	2402-dSTG	1603-LV
наименование 110	Firmware	Firmware	Firmware	Firmware	Firmware
Номер версии	х1119 и	х0030 и	х0030 и	х0А14 и	х1120 и
(идентификационный	хиия	хоозо и	хоозо и	ходт4 и	Х1120 И
номер) ПО	выше	выше	выше	выше	выше
Цифровой	По номеру версии				
идентификатор ПО					

Таблица 26 - Идентификационные данные программного обеспечения модулей ввода/вывода

Идентификационные	Значения				
данные (признаки)					
Идентификационное наименование ПО	TRION- 2402-V Firmware	NI- DAQmx	TRION- BASE Firmware	TRION- TIMING Firmware	TRION- CNT Firmware
Номер версии (идентификационный номер) ПО	х1016 и выше	9.2.0 и выше	х1143 и выше х111		x1119
Цифровой идентификатор ПО	По номеру версии				

Таблица 2в - Идентификационные данные программного обеспечения модулей ввода/вывода

Tuomiqu 25 Tigoti inpiningi agricultura inporpulation o occine territa mogysten bboqui bbiboqui					
Идентификационные	Значения				
данные (признаки)					
Идентификационное наименование ПО	TRION- MULTI Firmware	CPAD3- TH8 Firmware	CPAD3-V8 Firmware	xPAD2- TH8-P Firmware	xPAD2-V8 Firmware
Номер версии (идентификационный номер) ПО	х0А22 и выше	2.10 и выше	2.01 и выше	7.50 и выше	7.10 и выше
Цифровой идентификатор	По номеру версии				
ПО					

Таблица 2г - Идентификационные данные программного обеспечения модулей ввода/вывода

Идентификационные данные	Значения			
(признаки)				
Идентификационное наименование	xPAD2-RTD8	xPAD2-LA8	EPAD2-AO4	
ПО	Firmware	Firmware	Firmware	
Номер версии (идентификационный номер) ПО	7.50 и выше	7.50 и выше	1.00 и выше	
Цифровой идентификатор ПО	По номеру версии			

Таблица 3 - Идентификационные данные программного обеспечения верхнего уровня

Идентификационные данные (признаки)	Значения		
Идентификационное наименование ПО	Oxygen	Nitrogen	DEWESoft
Номер версии (идентификационный номер) ПО	2.1 и выше 2.6 и выше 7.1 и выше		
Цифровой идентификатор ПО	По номеру версии		

Метрологические и технические характеристики

Таблица 4 - Метрологические характеристики модулей аналогового ввода/вывода комплексов					
	Диапазоны прес	бразований		Пределы	
	аналоговых сигнал	ов/разрядность		допускаемой	
	цифровых с	игналов	Продоли попускасной	абсолютной	
Модуль ввода/вы- вода	На входе	На выходе	Пределы допускаемой абсолютной основной погрешности (X - измеренное значение; R - верхняя граница диапазона измерений)	дополнительной погрешности от изменения температуры окружающей среды в диапазоне рабочих температур	
1	2	3	4	5	
1		3	+	J	
	тапряжение постоянного тока: ±5 мВ ±10 мВ ±20 мВ ±50 мВ ±100 мВ ±200 мВ ±200 мВ ±500 мВ ±1 В ±2 В ±5 В ±10 В ±20 В ±50 В ±70 В	24 бит при частоте опроса от 100 Гц до 1 МГц включ. 16 бит при частоте опроса св. 1 до 2 МГц включ.	$\pm (2 \cdot 10^{-4} \cdot \text{X} + 2 \cdot 10^{-4} \cdot \text{R} +$ $+20)$ мкВ (для диапазона ± 70 В значение $\text{R} = 100$ В)	±(20 млн ⁻¹ /°С·Х+ +15 мкВ/°С+ +20 млн ⁻¹ ·R)	
TRION- 1620-LV	Мгновенные значения напряжения переменного тока частотой от 0,0001 Гц до 100 кГц: ±5 мВ ±10 мВ ±20 мВ ±50 мВ ±100 мВ ±200 мВ ±500 мВ ±1 В ±2 В ±5 В ±10 В ±20 В ±50 В ±70 В	24 бит при частоте опроса от 100 Гц до 1 МГц включ. 16 бит при частоте опроса св. 1 до 2 МГц включ.	При частотах от 0,0001 Γ ц до 1 к Γ ц включ.: $\pm (2 \cdot 10^{-4} \cdot \text{X} + 2 \cdot 10^{-4} \cdot \text{R} + 20)$ мкВ св. 1 к Γ ц до 5 к Γ ц включ.: $\pm (0,002 \cdot \text{X} + 2 \cdot 10^{-4} \cdot \text{R} + 20)$ мкВ св. 5 к Γ ц до 10 к Γ ц включ.: $\pm (0,005 \cdot \text{X} + 2 \cdot 10^{-4} \cdot \text{R} + 20)$ мкВ св. 10 к Γ ц до 100 к Γ ц включ.: $\pm (0,01 \cdot \text{X} + 2 \cdot 10^{-4} \cdot \text{R} + 20)$ мкВ св. 10 к Γ ц до 100 к Γ ц включ.: $\pm (0,01 \cdot \text{X} + 2 \cdot 10^{-4} \cdot \text{R} + 20)$ мкВ (для диапазона ± 70 В значение Γ	±(20 млн ⁻¹ /°С·Х+ +15 мкВ/°С+ +20 млн ⁻¹ ·R)	

продолжение т 1	2	3	4	5
	Сила постоянного тока (только для модификации с разъемом LEMO): от 0 до 10 мА от 0 до 20 мА от 0 до 50 мА от 0 до 100 мА	24 бит при частоте опроса от 100 Гц до 1 МГц включ. 16 бит при частоте опроса св. 1 до 2 МГц включ.	±(0,001·X+2·10 ⁻⁴ ·R+ +10) мкА	±(20 млн ⁻¹ /°С·Х+ +15 мкА/°С+ +20 млн ⁻¹ ·R)
TRION-1620- LV	Мгновенные значения силы переменного тока частотой от 0,0001 Гц до 100 кГц (только для модификации с разъемом LEMO): ±10 мА ±20 мА ±50 мА ±100 мА	24 бит при частоте опроса от 100 Гц до 1 МГц включ. 16 бит при частоте опроса св. 1 до 2 МГц включ.	При частотах от 0,0001 Гц до 1 кГц включ.: ±(0,001·X+2·10 ⁻⁴ ·R+ +10) мкА св. 1 кГц до 5 кГц включ.: ±(0,002·X+2·10 ⁻⁴ ·R+ +10) мкА св. 5 кГц до 10 кГц включ.: ±(0,005·X+2·10 ⁻⁴ ·R+ +10) мкА св. 10 кГц до 100 кГц включ.: ±(0,01·X+2·10 ⁻⁴ ·R+ +10) мкА	±(20 млн ⁻¹ /°С·Х+ +15 мкА/°С+ +20 млн ⁻¹ ·R)
TRION-1620- ACC	Напряжение постоянного тока (в т.ч. от датчиков IEPE): ±5 мВ ±10 мВ ±20 мВ ±50 мВ ±100 мВ ±200 мВ ±500 мВ ±1 В ±2 В ±2 В ±5 В ±10 В ±20 В ±50 В ±70 В	 24 бит при частоте опроса от 100 Гц до 1 МГц включ. 16 бит при частоте опроса св. 1 до 2 МГц включ. 	$\pm (2 \cdot 10^{-4} \cdot \text{X} + 2 \cdot 10^{-4} \cdot \text{R} + + 20) \text{ мкB}$ (для диапазона $\pm 70 \text{ B}$ значение $\text{R} = 100 \text{ B}$)	±(20 млн ⁻¹ /°С·Х+ +15 мкВ/°С+ +20 млн ⁻¹ ·R)

Продолжение та		2	A	<i>-</i>
1	2	3	4	5
TRION-1620- ACC	Мгновенные значения напряжения переменного тока частотой от 0,0001 Гц до 100 кГц (в т.ч. от датчиков IEPE): ±5 мВ ±10 мВ ±20 мВ ±50 мВ ±100 мВ ±200 мВ ±500 мВ ±1 В ±2 В ±5 В ±10 В ±20 В ±50 В ±70 В	24 бит при частоте опроса от 100 Гц до 1 МГц включ. 16 бит при частоте опроса св. 1 до 2 МГц	При частотах от 0,0001 Γ ц до 1 к Γ ц включ.: $\pm (2 \cdot 10^{-4} \cdot \text{X} + 2 \cdot 10^{-4} \cdot \text{R} + 20)$ мкВ св. 1 к Γ ц до 5 к Γ ц включ.: $\pm (0,002 \cdot \text{X} + 2 \cdot 10^{-4} \cdot \text{R} + 20)$ мкВ св. 5 к Γ ц до 10 к Γ ц включ.: $\pm (0,005 \cdot \text{X} + 2 \cdot 10^{-4} \cdot \text{R} + 20)$ мкВ св. 10 к Γ ц до 100 к Γ ц включ.: $\pm (0,01 \cdot \text{X} + 2 \cdot 10^{-4} \cdot \text{R} + 20)$ мкВ св. 10 к Γ ц до 100 к Γ ц включ.: $\pm (0,01 \cdot \text{X} + 2 \cdot 10^{-4} \cdot \text{R} + 20)$ мкВ (для диапазона ± 70 В значение Γ 3 в значение Γ 4 в значение Γ 5 в значение Γ 6 в значение Γ 6 в значение Γ 7 в значение Γ 8 в значение Γ 8 в значение Γ 9 в значение Γ	±(20 млн ⁻¹ /°C·X+ +15 мкВ/°C+ +20 млн ⁻¹ ·R)
TRION-2402- MULTI	Напряжение постоянного тока: диапазон измерений устанавлива-ется пользователем программно в пределах от ±5 мВ до ±100 В и в т.ч. от датчиков IEPE в пределах от ±100 мВ до ±10 В	24 бит	$\pm (2 \cdot 10^{-4} \cdot X + 2 \cdot 10^{-4} \cdot R + + 20)$ мкВ	$\pm (20 \text{ млн}^{-1}/^{\circ}\text{C}\cdot\text{X}+ +2 \text{ мкB}/^{\circ}\text{C}+ +20 \text{ млн}^{-1}\cdot\text{R})$
(коэффициент преобразования моста от 1 до 1000 мВ/В)	Мгновенные значения напряжения переменного тока частотой от 0,0001 Гц до 10 кГц: диапазон измерений устанавливается пользователем программно в пределах от ±5 мВ до ±100 В и в т.ч. от датчиков IEPE в пределах от ±100 мВ до ±10 В	24 бит	При частотах от 0,0001 Γ ц до 1 к Γ ц включ.: $\pm (2 \cdot 10^{-4} \cdot \text{X} + 2 \cdot 10^{-4} \cdot \text{R} + 20)$ мкВ св. 1 к Γ ц до 5 к Γ ц включ.: $\pm (3 \cdot 10^{-4} \text{ X} + 2 \cdot 10^{-4} \cdot \text{R} + 20)$ мкВ св. 5 к Γ ц до 10 к Γ ц включ.: $\pm (0,01 \text{ X} + 2 \cdot 10^{-4} \cdot \text{R} + 20)$ мкВ	$\pm (20 \text{ млн}^{-1}/^{\circ}\text{C}\cdot\text{X}+ +2 \text{ мкB}/^{\circ}\text{C}+ +20 \text{ млн}^{-1}\cdot\text{R})$

1 1	2	3	4	5
TRION-2402- MULTI (коэффициент преобразова-	Сопротивление постоянному электрическому току: от 0 до 10 Ом от 0 до 30 Ом от 0 до 300 Ом от 0 до 1 кОм от 0 до 3 кОм от 0 до 10 кОм от 0 до 30 кОм	24 бит	$\begin{array}{c} \pm (0,02 \cdot X + 4) \text{ MOM} \\ \pm (0,02 \cdot X + 8) \text{ MOM} \\ \pm (0,0025 \cdot X + 40) \text{ MOM} \\ \pm (0,0025 \cdot X + 80) \text{ MOM} \\ \pm (0,0025 \cdot X + 0,2) \text{ OM} \\ \pm (0,0025 \cdot X + 0,6) \text{ OM} \\ \pm (0,0045 \cdot X + 2) \text{ OM} \\ \pm (0,01 \cdot X + 6) \text{ OM} \end{array}$	±(35 млн ⁻¹ /°С·Х+ +2 мкОм/°С+ +20 млн ⁻¹ ·R)
ния моста от 1 до 1000 мВ/В)	Сигналы термопреобра- зователей сопротивления Pt100 Pt200 Pt500 Pt1000 Pt2000 в диапазоне от -200 до +850 °C	24 бит	±(0,0033· X +0,9) °C ±(0,0033· X +0,7) °C ±(0,0033· X +0,7) °C ±(0,004· X +1,1) °C ±(0,004· X +1,1) °C	±100 млн ⁻¹ /°С·R
TRION-1603- LV	Напряжение постоянного тока: ±5 мВ ±10 мВ ±20 мВ ±50 мВ ±100 мВ ±200 мВ ±500 мВ ±1 В ±2 В ±2 В ±5 В ±10 В ±20 В ±50 В ±70 В	16 бит	$\pm (2 \cdot 10^{-4} \cdot \text{X} + 2 \cdot 10^{-4} \cdot \text{R} + + 20) \text{ мкB}$ (для диапазона $\pm 70 \text{ B}$ значение $\text{R} = 100 \text{ B}$)	±(20 млн ⁻¹ /°С·Х+ +15 мкВ/°С+ +20 млн ⁻¹ ·R)

1 1	2	3	4	5
	Мгновенные значения напряжения переменного тока частотой от 0,0001 Гц до 10 кГц: ±5 мВ ±10 мВ ±20 мВ ±50 мВ ±100 мВ ±200 мВ ±500 мВ ±1 В ±2 В ±5 В ±10 В ±20 В ±50 В ±70 В	3	При частотах от 0,0001 Гц до 1 кГц включ.: ±(2·10 ⁻⁴ ·X+2·10 ⁻⁴ ·R+ +20) мкВ св. 1 кГц до 5 кГц включ.: ±(0,002·X+2·10 ⁻⁴ ·R+ +20) мкВ св. 5 кГц до 10 кГц включ.: ±(0,005·X+2·10 ⁻⁴ ·R+ +20) мкВ (для диапазона ±70 В значение R = 100 В)	±(20 млн ⁻¹ /°С·Х+ +15 мкВ/°С+ +20 млн ⁻¹ ·R)
TRION-1603- LV	Сила постоянного тока (только для модификации с разъемом LEMO): от 0 до 10 мА от 0 до 20 мА от 0 до 50 мА от 0 до 100 мА	16 бит	±(0,001·X+2·10 ⁻⁴ ·R+ +10) мкА	±(20 млн ⁻¹ /°С·Х+ +15 мкА/°С+ +20 млн ⁻¹ ·R)
	Мгновенные значения силы переменного тока частотой от 0,0001 Гц до 10 кГц (только для модификации с разъемом LEMO): ±10 мА ±20 мА ±50 мА ±100 мА	16 бит	При частотах от 0,0001 Гц до 1 кГц включ.: ±(0,001·X+2·10 ⁻⁴ ·R+ +10) мкА св. 1 кГц до 5 кГц включ.: ±(0,002·X+2·10 ⁻⁴ ·R+ +10) мкА св. 5 кГц до 10 кГц включ.: ±(0,005·X+2·10 ⁻⁴ ·R+ +10) мкА	±(20 млн ⁻¹ /°С·Х+ +15 мкА/°С+ +20 млн ⁻¹ ·R)

Продолжение т		2	А	F
1	2	3	4	5
TRION-2402- dSTG	Напряжение постоянного тока (отмеченные * диапазоны могут быть использованы для приема сигналов в т.ч. от датчиков IEPE): ±10 мВ ±30 мВ ±100 мВ* ±300 мВ* ±1 В* ±3 В* ±10 В*	24 бит	$\pm (2 \cdot 10^{-4} \cdot X + 2 \cdot 10^{-4} \cdot R + + 20)$ мкВ	±(20 млн ⁻¹ /°С·Х+ +2 мкВ/°С+ +20 млн ⁻¹ ·R)
(коэффициенты преобразования моста: 1 мВ/В 3 мВ/В 10 мВ/В 30 мВ/В 100 мВ/В 300 мВ/В 1000 мВ/В 1 мВ/мА 3 мВ/мА 10 мВ/мА 30 мВ/мА 30 мВ/мА	жичения напряжения переменного тока частотой от 0,0001 Гц до 10 кГц (отмеченные * диапазоны могут быть использованы для приема сигналов в т.ч. от датчиков IEPE): ±10 мВ ±30 мВ ±100 мВ* ±300 мВ* ±1 В* ±3 В* ±10 В*	24 бит	При частотах $0,0001$ Гц to 1 кГц включ.: $\pm (2 \cdot 10^{-4} \cdot \text{X} + 2 \cdot 10^{-4} \cdot \text{R} + 20)$ мкВ св. 1 кГц до 5 кГц включ.: $\pm (3 \cdot 10^{-4} \text{ X} + 2 \cdot 10^{-4} \cdot \text{R} + 20)$ мкВ св. 5 кГц до 10 кГц включ.: $\pm (0,01 \text{ X} + 2 \cdot 10^{-4} \cdot \text{R} + 20)$ мкВ	±(20 млн ⁻¹ /°С·Х+ +2 мкВ/°С+ +20 млн ⁻¹ ·R)
	Сопротивление постоянному электрическому току: от 0 до 10 Ом от 0 до 30 Ом от 0 до 300 Ом от 0 до 1 кОм от 0 до 3 кОм от 0 до 10 кОм от 0 до 30 кОм	24 бит	$\begin{array}{l} \pm (0,0007 \cdot \text{X} + 4) \text{ MOM} \\ \pm (0,0007 \cdot \text{X} + 8) \text{ MOM} \\ \pm (0,0025 \cdot \text{X} + 40) \text{ MOM} \\ \pm (0,0025 \cdot \text{X} + 80) \text{ MOM} \\ \pm (0,0025 \cdot \text{X} + 0,2) \text{ OM} \\ \pm (0,0025 \cdot \text{X} + 0,6) \text{ OM} \\ \pm (0,0045 \cdot \text{X} + 2) \text{ OM} \\ \pm (0,01 \cdot \text{X} + 6) \text{ OM} \end{array}$	±(35 млн ⁻¹ /°С·Х+ +2 мкОм/°С+ +20 млн ⁻¹ ·R)

Продолжение та	2	3	Л	5
I TEDIONI 2402	2	3	4	3
TRION-2402- dSTG (коэффициен- ты преобра- зования моста: 1 мВ/В 3 мВ/В 10 мВ/В 30 мВ/В 100 мВ/В 1000 мВ/В 1 мВ/мА 3 мВ/мА 1 мВ/мА 30 мВ/мА 10 мВ/мА 30 мВ/мА 100 мВ/мА	Сигналы термопреобра- зователей сопротивления Pt100 Pt200 Pt500 Pt1000 Pt2000 B диапазоне от -200 до +850 °C	24 бит	$\pm (0,0033 \cdot X + 0,9) ^{\circ}C$ $\pm (0,0033 \cdot X + 0,7) ^{\circ}C$ $\pm (0,0033 \cdot X + 0,7) ^{\circ}C$ $\pm (0,004 \cdot X + 1,1) ^{\circ}C$ $\pm (0,004 \cdot X + 1,1) ^{\circ}C$	±150млн ⁻¹ /°C ·R
	Напряжение пост. тока (отмеченные * диапазоны могут быть использованы для приема сигналов в т.ч. от датчиков IEPE): ±30 мВ ±100 мВ* ±300 мВ* ±1 В* ±3 В* ±10 В* ±30 В ±100 В	24 бит	$\pm (2 \cdot 10^{-4} \cdot \text{X} + 2 \cdot 10^{-4} \cdot \text{R} + 200)$ мкВ	±(20 млн ⁻¹ /°С·Х+ +15 мкВ/°С+ +20 млн ⁻¹ ·R)
TRION-2402-dACC	Мгновенные знач. напряжения перем. тока частотой от 0,0001 Гц до 10 кГц (отмеченные * диапазоны могут быть использованы для приема сигналов в т.ч. от датчиков IEPE): ±30 мВ ±100 мВ* ±300 мВ* ±1 В* ±3 В* ±10 В* ±30 В ±100 В	24 бит	При частотах от 0,0001 Гц до 1 кГц включ.: ±(2·10 ⁻⁴ ·X+2·10 ⁻⁴ ·R+ +200) мкВ св. 1 кГц до 5 кГц включ.: ±(3·10 ⁻⁴ X+2·10 ⁻⁴ ·R+ +200) мкВ св. 5 кГц до 10 кГц включ.: ±(0,01·X+2·10 ⁻⁴ ·R+ +200) мкВ	±(20 млн ⁻¹ /°С·Х+ +2 мкВ/°С+ +20 млн ⁻¹ ·R)

Продолжение таблицы 4						
1	2	3	4	5		
TRION-2402- dACC	Сопротивление пост. электр. току: от 0 до 10 Ом от 0 до 30 Ом от 0 до 100 Ом от 0 до 300 Ом от 0 до 1 кОм от 0 до 3 кОм от 0 до 10 кОм от 0 до 30 кОм от 0 до 300 кОм от 0 до 300 кОм	24 бит	$\pm (0,0007 \cdot X+4) \text{ MOM}$ $\pm (0,0007 \cdot X+8) \text{ MOM}$ $\pm (0,0025 \cdot X+40) \text{ MOM}$ $\pm (0,0025 \cdot X+80) \text{ MOM}$ $\pm (0,0025 \cdot X+0,2) \text{ OM}$ $\pm (0,0025 \cdot X+0,6) \text{ OM}$ $\pm (0,0025 \cdot X+0,6) \text{ OM}$ $\pm (0,0045 \cdot X+2) \text{ OM}$ $\pm (0,001 \cdot X+6) \text{ OM}$ $\pm (0,002 \cdot X+20) \text{ OM}$ $\pm (0,002 \cdot X+20) \text{ OM}$	$\pm 200 \text{ млн}^{-1}/^{\circ}\text{C} \cdot \text{R}$ $\pm 100 \text{ млн}^{-1}/^{\circ}\text{C} \cdot \text{R}$		
TRION-2402-V	от 0 до 1 МОм Напряжение постоянного тока ±0,3 В ±1 В ±3 В ±10 В ±30 В ±100 В ±400 В ±1000 В Мгновенные значения напряжения переменного тока частотой от 0,0001 Гц до 10 кГц: ±0,3 В ±1 В ±3 В ±10 В	24 бит	# ±(0,02·X+200) Ом # ±(2·10 ⁻⁴ ·X+2·10 ⁻⁴ ·R+ # +3) мВ для диапазонов # ±10 В и менее # ±(2·10 ⁻⁴ ·X+2·10 ⁻⁴ ·R+ # +200) мкВ для диапазонов более ±10 В При частотах от 0,0001 Гц до 1 кГц # включ.: # ±(2·10 ⁻⁴ ·X+2·10 ⁻⁴ ·R+ # +200) мкВ СВ. 1 кГц до 5 кГц # включ.: # ±(0,003·X+2·10 ⁻⁴ ·R+ # +200) мкВ СВ. 5 кГц до 10 кГц # включ.: # ±(0,01·X+2·10 ⁻⁴ ·R+ # +200) мкВ	±100 млн ⁻¹ /°С·R ±(20 млн ⁻¹ /°С·X+ +15 мкВ/°С+ +40 млн ⁻¹ ·R) для диап. ±10 В и менее ±(20 млн ⁻¹ /°С·X+ +500 мкВ/°С+ +40 млн ⁻¹ ·R) для диап. более ±10 В ±(20 млн ⁻¹ /°С·X+ +15 мкВ/°С+ +40 млн ⁻¹ ·R)		
	Мгновенные значения напряжения переменного тока частотой от 0,0001 Гц до 10 кГц: ±30 В ±100 В ±400 В ±1000 В	24 бит	При частотах от 0,0001 Гц до 1 кГц включ.: ±(2·10 ⁻⁴ ·X+2·10 ⁻⁴ ·R+ +3) мВ св. 1 кГц до 5 кГц включ.: ±(0,003·X+2·10 ⁻⁴ ·R+ +3) мВ св. 5 кГц до 10 кГц включ.: ±(0,01·X+2·10 ⁻⁴ ·R+ +3) мВ	$\pm (20 \text{ млн}^{-1}/^{\circ}\text{C}\cdot\text{X}+ +500 \text{ мкB/}^{\circ}\text{C}+ +40 \text{ млн}^{-1}\cdot\text{R})$		

Продолжение та	2	3	4	5
СРАДЗ-ТН8-г где z - тип термопары или UNIVERSAL (для универсаль- ных модулей)	Сигналы от термопар типов: К (от -200 до +1372 °C) Ј (от -210 до +1200°C) Т (от -250 до +400°C) К (от -50 до +1760°C) Ѕ (от -50 до +1760°C) Ѕ (от -200 до +1300 °C) Е (от -200 до +1000°C) В (от 0 до +1820 °C)	20 бит	см. табл. 5	±(25 млн ⁻¹ /°С·Х+ +25 млн ⁻¹ /°С·R)
CPAD3-V8	Напряжение постоянного тока: ±100 мВ ±500 мВ ±1 В ±2,5 В ±5 В ±10 В ±50 В	20 бит	±(2·10 ⁻⁴ ·X+900) мкВ	±(20 млн ⁻¹ /°С·Х+ +20 млн ⁻¹ /°С·R)
хРАD2-ТН8-z где z - тип термопары или UNIVERSAL (для универсаль- ных модулей)	Сигналы от термопар типов: К (от -200 до +1372°С) Ј (от -200 до +1200°С) Т (от -200 до +400°С) R (от -50 до +1760°С) S (от -50 до +1760°С) N (от -200 до +1300°С) E (от -200 до +1000°С) L (от 0 до +800°С) В (от 0 до +1820°С)	24 бит	см. табл. б	±(25 млн ⁻¹ /°С·Х+ +25 млн ⁻¹ /°С·R)

1	аолицы 4 2	3	4	5
1		J	' ' '	J
xPAD2-LA	Сила пост. тока: от 0 до 20 мА ±20 мА ±30 мА	24 бит	$\pm (3.10^{-4}.X+0.3) \text{ MKA}$	$\pm (25 \text{ млн}^{-1}/^{\circ}\text{C}\cdot\text{X} + + 25 \text{ млн}^{-1}/^{\circ}\text{C}\cdot\text{R})$
xPAD2-V8	Напряжение постоянного тока ±100 мВ ±500 мВ ±1 В ±2,5 В ±5 В ±10 В ±50 В	24 бит	±(2·10 ⁻⁴ ·X+900) мкВ	±(20 млн ⁻¹ /°C·X+ +20 млн ⁻¹ /°C·R)
	Сопротивление постоянному току от 0 до 999,99 Ом	24 бит	$\pm (3 \cdot 10^{-4} \cdot X + 0.1) \text{ Om}$	$\pm (25 \text{ млн}^{-1}/^{\circ}\text{C}\cdot\text{X}+ +25 \text{ млн}^{-1}/^{\circ}\text{C}\cdot\text{R})$
xPAD2-RTD8	Сигналы от термопреобра- зователей сопротивления (температурный коэф-т 0,00385 °C ⁻¹): Pt100 (от -200 до +800 °C) Pt200 (от -200 до +630 °C) Pt500 (от -200 до +250 °C) Pt1000 (от -200 до +600 °C) Pt2000 (от -200 до +200 °C)	24 бит	см. табл. 7	±(25 млн ⁻¹ /°C·X+ +25 млн ⁻¹ /°C·R)
xPAD2-TH8-P	±1,5 B	24 бит	$\pm (5 \cdot 10^{-4} \cdot X + 15)$ мкВ	±(25 млн ⁻¹ /°С·Х+ +25 млн ⁻¹ /°С·R)
хРАD2-ТН8-Р с модулем расширения PAD-CB8-RTD	Сигналы от термопреобра- зователей сопротивления (температурный коэф-т 0,00385 °C ⁻¹): Pt100 (от -200 до +800 °C) Pt200 (от -200 до +630 °C) Pt500 (от -200 до +250 °C) Pt1000 (от -200 до +600 °C) Pt2000 (от -200 до +600 °C)	24 бит	см. табл. 9	±(25 млн ⁻¹ /°С·Х+ +25 млн ⁻¹ /°С·R)

1	2	3	4	5
хРАD2-ТН8-Р с модулем расширения РАD-СВ8-х, где х - тип термопары	Сигналы от термопар типов: J (от -200 до +1200°C) K (от -200 до +1372°C) T (от -200 до +400°C)	24 бит	см. табл. 8	±(25 млн ⁻¹ /°С·Х+ +25 млн ⁻¹ /°С·R)
EPAD2-AO4	12 бит	Напряжение пост. тока: от 0 до 5 В от 0 до 10 В ±5 В ±10 В	±0,1 % от верхнего значения диапазона преобразований	±40 млн ⁻¹ /°C·R
EPADZ-AO4	12 бит	Сила пост. тока: от 0 до 20 мА от 4 до 20 мА	±0,1 % от верхнего значения диапазона преобразований	±40 млн ⁻¹ /°С·R

Примечания

- 1 В модулях TRION-2402-dSTG, TRION-2402-dACC, TRION-2402-V, TRION-2402-MULTI, TRION-1620-ACC, TRION-1620-LV, TRION-1603-LV предусмотрена возможность измерений силы постоянного электрического тока при помощи подключения внешнего шунта. Метрологические характеристики измерений силы постоянного электрического тока зависят от характеристик шунта и не нормированы.
- 2 Также в составе комплексов могут применяться цифроаналоговые преобразователи TRION-1628-AO-2, которые основаны на преобразователях напряжения измерительные цифроаналоговых NI 6251 (регистрационный № 44245-10) с интерфейсом РХІ. При этом никаких изменений в конструкцию или программное обеспечение NI 6251 не вносится.
- 3 Погрешность модулей, осуществляющих измерения сигналов от термопреобразователей сопротивления нормирована для 4-х проводной схемы подключения.
- 4 Нормальные условия применения: температура окружающей среды от +18 до +28 °C.

Таблица 5 - Метрологические характеристики модулей CPAD3-TH8

	Пределы допускаемой абсолютной основной погрешности,	
Сириан на русна монуна	включая погрешность канала компенсации температуры	
Сигнал на входе модуля	холодного спая (для модуля xPAD3-TH8-UNIVERSAL к	
	значению указанной погрешности необходимо добавить 1 °C)	
	$\pm 1,0~^{\circ}\text{C}$ в диапазоне от - 200 до -25 $^{\circ}\text{C}$ включ.	
Сигнал от термопар типа К	$\pm 0,4$ °C в диапазоне свыше -25 до $+1000$ °C включ.	
	± 0.5 °C в диапазоне свыше $+1000$ до $+1372$ °C включ.	
	$\pm 1,0~^{\circ}\text{C}$ в диапазоне от -210 до -100 $^{\circ}\text{C}$ включ.	
Сигнал от термопар типа Ј	± 0.3 °C в диапазоне свыше -100 до +760 °C включ.	
	± 0.4 °C в диапазоне свыше $+760$ до $+1200$ °C включ.	
Cyryson on many caren myre T	±1,0 °C в диапазоне свыше -250 до -150 °C включ.	
Сигнал от термопар типа Т	$\pm 0.4~^{\circ}\text{C}$ в диапазоне свыше -150 до +400 $^{\circ}\text{C}$ включ.	

	$\pm 1,6~^{\circ}{\rm C}$ в диапазоне от -50 до 0 $^{\circ}{\rm C}$ включ.			
Сигнал от термопар типа R	$\pm 1,0~^{\circ}$ С в диапазоне свыше 0 до $+100~^{\circ}$ С включ.			
	± 0.4 °C в диапазоне свыше $+100$ до $+1760$ °C включ.			
	Пределы допускаемой абсолютной основной погрешности,			
CHENOR HO BYONG MORNING	включая погрешность канала компенсации температуры			
Сигнал на входе модуля	холодного спая (для модуля xPAD3-TH8-UNIVERSAL к			
	значению указанной погрешности необходимо добавить 1 °C)			
	±1,6 °C в диапазоне от -50 до 0 °C включ.			
Сигнал от термопар типа S	$\pm 1,0$ °C в диапазоне свыше 0 до ± 100 °C включ.			
	$\pm 0,4$ °C в диапазоне свыше $+100$ до $+1760$ °C включ.			
Cyryan ar rankayan ryya N	±1,2 °C в диапазоне свыше -200 до -100 °C включ.			
Сигнал от термопар типа N	$\pm 0,5$ °C в диапазоне свыше -100 до +1300 °C включ.			
Cyrryan an many sawan myra E	$\pm 1,0~^{\circ}$ С в диапазоне свыше -200 до -50 $^{\circ}$ С включ.			
Сигнал от термопар типа Е	$\pm 0,4$ °C в диапазоне свыше -50 до +1000 °C включ.			
	±20 °C в диапазоне от 0 до +400 °C включ.			
Сигнал от термопар типа В	± 0.6 °C в диапазоне свыше $+400$ до $+1000$ °C включ.			
	± 0.5 °C в диапазоне свыше $+1000$ до $+1800$ °C включ.			

Таблица 6 - Метрологические характеристики модулей хРАD3-ТН8

	Пределы допускаемой абсолютной основной погрешности, включая погрешность						
		канала компенсации температуры холодного спая (для модуля xPAD2-TH8- UNIVERSAL к значению указанной погрешности необходимо добавить 1 °C,					
C	термопары типа L модулем xPAD2-TH8-UNIVERSAL не поддерживаются)						
Сигнал на входе модуля	в диапазоне от -200 до -100 °C включ.	в диапазоне св100 до 0 °C включ.	в диапазоне св. 0 до +100 °C включ.	в диапазоне св. +100 до +400 °С включ.	в диапазоне св. +400 до +1000 °C включ.	для измеряемой температуры св. +1000 °C	
Сигнал от термопар типа К	±1,0 °C	±0,5 °C	±0,4 °C	±0,5 °C	±0,7 °C	±1,0 °C	
Сигнал от термопар типа J	±1,0 °C	±0,4 °C	±0,3 °C	±0,4 °C	±0,6 °C	±1,0 °C	
Сигнал от термопар типа Т	±1,0 °C	±0,5 °C	±0,4 °C	±0,4 °C	ı	-	
Сигнал от термопар типа R	-	±2,6 °C	±1,8 °C	±1,3 °C	±1,1 °C	±1,3 °C	
Сигнал от термопар типа S	-	±2,4 °C	±1,8 °C	±1,4 °C	±1,1 °C	±1,5 °C	

1	Пределы дог	Пределы допускаемой абсолютной основной погрешности, включая погрешность				
	канала компенсации температуры холодного спая (для модуля хРАD2-TH8- UNIVERSAL к значению указанной погрешности необходимо добавить 1 °C,					
Сигнал	термопар	ы типа L мод	цулем хРАD2-	TH8-UNIVERS	AL не подде	рживаются)
на входе модуля	в диапазоне от -200 до -100 °C включ.	в диапазоне св. -100 до 0 °C включ.	в диапазоне св. 0 до +100 °C включ.	в диапазоне св. +100 до +400 °C включ.	в диапазоне св. +400 до +1000 °C включ.	для измеряемой температуры св. +1000 °C
Сигнал от термопар типа N	±1,3 °C	±0,6 °C	±0,5 °C	±0,5 °C	±0,6 °C	±0,8 °C
Сигнал от термопар типа Е	±0,8 °C	±0,4 °C	±0,3 °C	±0,3 °C	±0,5 °C	-
Сигнал от термопар типа L	-	-	±0,4 °C	±0,4 °C	±0,5 °C	-
Сигнал от термопар типа В	-	-	±9,2 °C	±9,0 °C	±2,3 °C	±1,2 °C

Таблица 7 - Метрологические характеристики модулей xPAD2-RTD8

	1 1
Сигнал на входе модуля	Пределы допускаемой абсолютной основной погрешности
Сигнал от	$\pm 0.25~^{\circ}\text{C}$ в диапазоне от -200 до +100 $^{\circ}\text{C}$ включ.
термопреобразователей	± 0.4 °C в диапазоне свыше $+100$ до $+400$ °C включ.
сопротивления Pt100	± 0.8 °C в диапазоне свыше $+400$ до $+800$ °C включ.
Сигнал от	$\pm 0.25~^{\circ}\text{C}$ в диапазоне от -200 до +100 $^{\circ}\text{C}$ включ.
термопреобразователей	$\pm 0.4~^{\circ}\text{C}$ в диапазоне свыше $+100$ до $+400~^{\circ}\text{C}$ включ.
сопротивления Pt200	± 0.5 °C в диапазоне свыше $+400$ до $+630$ °C включ.
Сигнал от	±0,25 °C в диапазоне от -200 до +100 °C включ.
термопреобразователей	± 0.4 °C в диапазоне свыше $+100$ до $+250$ °C включ.
сопротивления Pt500	±0,4 С в дианазоне свыше +100 до +230 С включ.
Сигнал от	$\pm 0.25~^{\circ}\text{C}$ в диапазоне от -200 до +100 $^{\circ}\text{C}$ включ.
термопреобразователей	± 0.4 °C в диапазоне свыше $+100$ до $+400$ °C включ.
сопротивления Pt1000	± 0.8 °C в диапазоне свыше $+400$ до $+600$ °C включ.
Сигнал от	10.25 °C p wantanaya at 200 no 1100 °C pressor
термопреобразователей	±0,25 °C в диапазоне от -200 до +100 °C включ.
сопротивления Pt2000	$\pm 0,4$ °C в диапазоне свыше $+100$ до $+200$ °C включ.

Таблица 8 - Метрологические характеристики модулей PAD-CB8-х

•	Пределы допускаемой абсолютной основной погрешности,		
Сигнал на входе модуля	включая погрешность канала компенсации температуры		
	холодного спая		
	±1,0 °C в диапазоне от -200 до -100 °C включ.		
Curves of Tenveron Ture I	± 0.3 °C в диапазоне свыше -100 до +150 °C включ.		
Сигнал от термопар типа J	$\pm 0,4$ °C в диапазоне свыше $+150$ до $+400$ °C включ.		
	$\pm 1,0~^{\circ}$ С в диапазоне свыше $+400$ до $+1200~^{\circ}$ С включ.		
	±1,0 °C в диапазоне от -200 до -25 °C включ.		
Curvey or representation with V	± 0.4 °C в диапазоне свыше -25 до +120 °C включ.		
Сигнал от термопар типа К	± 0.6 °C в диапазоне свыше $+120$ до $+400$ °C включ.		
	$\pm 1,0~^{\circ}$ С в диапазоне свыше $+400$ до $+1372~^{\circ}$ С включ.		
Сукуан от тормонор тупа Т	±1,0 °C в диапазоне от -200 до -150 °C включ.		
Сигнал от термопар типа Т	$\pm 0.4~^{\circ}\text{C}$ в диапазоне свыше -150 до +400 $^{\circ}\text{C}$ включ.		

Таблица 9 - Метрологические характеристики модулей PAD-CB8-RTD

Tuosingu 5 Welposiotti leekile kupuktepitettikii mogysten 1715 CBo K15				
Сигнал на входе модуля	Пределы допускаемой абсолютной основной погрешности			
Сигнал от	± 0.25 °C в диапазоне от -200 до +100 °C включ.			
термопреобразователей	± 0.4 °C в диапазоне свыше $+100$ до $+400$ °C включ.			
сопротивления Pt100	± 0.8 °C в диапазоне свыше $+400$ до $+800$ °C включ.			
Сигнал от	± 0.25 °C в диапазоне от -200 до +100 °C включ.			
термопреобразователей	$\pm 0.4~^{\circ}\text{C}$ в диапазоне свыше $+100$ до $+400~^{\circ}\text{C}$ включ.			
сопротивления Pt200	± 0.5 °C в диапазоне свыше $+400$ до $+630$ °C включ.			
Сигнал от	±0,25 °C в диапазоне от -200 до +100 °C включ.			
термопреобразователей				
сопротивления Pt500	$\pm 0.4~^{\circ}\text{C}$ в диапазоне свыше $+100$ до $+250~^{\circ}\text{C}$ включ.			
Сигнал от	±0,25 °C в диапазоне от -200 до +100 °C включ.			
термопреобразователей	$\pm 0.4~^{\circ}\text{C}$ в диапазоне свыше $+100$ до $+400~^{\circ}\text{C}$ включ.			
сопротивления Pt1000	$\pm 0.8~^{\circ}$ С в диапазоне свыше $+400$ до $+600~^{\circ}$ С включ.			
Сигнал от	±0,25 °C в диапазоне от -200 до +100 °C включ.			
термопреобразователей	$\pm 0.4~^{\circ}\text{C}$ в диапазоне свыше $+100$ до $+400~^{\circ}\text{C}$ включ.			
сопротивления Pt2000	$\pm 0.8~^{\circ}$ С в диапазоне свыше $+400$ до $+600~^{\circ}$ С включ.			

Таблица 10 - Метрологические характеристики модулей ввода импульсных сигналов

Модуль	Диапазоны преобраз импульсных сигналов/ра цифровых сигна	азрядность	Пределы допускаемой абсолютной погрешности в рабочих условиях применения (X - измеренное значение;
ввода/вывода	На входе	На выходе	R - верхняя граница диапазона измерений)
	Счет импульсов от 1 до 2^{32}	32 бит	±1 имп.
TRION-BASE	Период следования импульсов от 100 нс до 10000 с	32 бит	$\pm (12,5/X+10 \text{ млн}^{-1}\cdot \mathbf{R})$ нс
	Частота следования импульсов от 0,0001 Гц до 10 МГц	32 бит	±(X/80+10 млн ⁻¹ ·R) МГц
	Ширина импульса от 100 нс до <10000 с	32 бит	$\pm (12,5/X+10 \text{ млн}^{-1}\cdot \text{R})$ нс
	Скважность импульса св. 1 до 1·10 ¹¹	32 бит	$\pm (12,5/X+10 \text{ млн}^{-1} \cdot \text{R})$

Диапазоны преобразований Пределы допускаемой абсолютной					
Модуль ввода/вывода	диапазоны преобразовании импульсных сигналов/разрядность		погрешности в рабочих условиях		
	импульсных сигналов/разрядность цифровых сигналов		применения (Х - измеренное значение;		
	цифровых сигналов	На			
	На входе		R - верхняя граница диапазона		
	32	выходе	измерений)		
	Счет импульсов от 1 до 2^{32}	32 бит	±1 имп.		
	Период следования	32 бит	$\pm (12,5/X+10 \text{ млн}^{-1}\cdot \text{R})$ нс		
	импульсов				
TRION-CNT	от 100 нс до 10000 с				
	Частота следования				
	импульсов	32 бит	$\pm (X/80+10 \text{ млн}^{-1} \cdot \text{R}) \text{ М} \Gamma \text{ц}$		
	от 0,0001 Гц до				
	10 МГц				
	Ширина импульса	32 бит	±(12,5/X+10 млн ⁻¹ ·R) нс		
	от 100 нс до <10000 с				
	Скважность импульса	32 бит	· (10.5/X · 10		
	св. 1 до 1·10 ¹¹		$\pm (12,5/X+10 \text{ млн}^{-1} \cdot \text{R})$		
	Счет импульсов от 1 до 2^{32}	32 бит	±1 имп.		
	Период следования				
	импульсов	32 бит	$\pm (12,5/X+10 \text{ млн}^{-1}\cdot \text{R})$ нс		
TRION- TIMING	от 100 нс до 10000 с				
	Частота следования				
	импульсов	32 бит	$\pm (X/80+10 \text{ млн}^{-1}\cdot R) \text{ M}\Gamma$ ц		
	от 0,0001 Гц до				
	10 МГц				
	Ширина импульса	32 бит	±(12,5/X+10 млн ⁻¹ ·R) нс		
	от 100 нс до <10000 с				
	Скважность импульса	32 бит	$\pm (12,5/X+10 \text{ млн}^{-1} \cdot \text{R})$		
	св. 1 до 1·10 ¹¹				

Таблица 11 - Основные технические характеристики шасси комплексов

Наименование характеристики	Значение
Параметры электрического питания:	
- напряжение переменного тока, В	от 90 до 264
- частота переменного тока, Гц	50±2
или	
- напряжение постоянного тока, В	от 10 до 36
Габаритные размеры, мм, не более	
- высота	500
- ширина	500
- глубина	500
Рабочие условия эксплуатации:	
- температура окружающей среды, °С	
без предварительного прогрева	от 0 до +50
при предварительном прогреве не менее 30 минут при	от -20 до +50
нормальной температуре	
- относительная влажность, %	
без конденсации влаги	от 10 до 80
с конденсацией влаги	от 5 до 95

Таблица 12 - Основные технические характеристики модулей xPAD

Наименование характеристики	Значение
Параметры электрического питания:	
- напряжение постоянного тока (для модуля EPAD2-AO4), В	от 10 до 30
- напряжение постоянного тока (для остальных модулей), В	от 7 до 40
Габаритные размеры, мм, не более	
- высота	50,2
- ширина	129
- глубина	72
Рабочие условия эксплуатации:	
- температура окружающей среды, °С	
в обычном исполнении	от -5 до +60
в специсполнении	от -40 до +85
- относительная влажность (без конденсации влаги	от 0 до 95
при 60 °C), %	

Таблица 13 - Основные технические характеристики модулей PAD-CB8-Z и PAD-CB8-RTD

1 1	· <u>J</u>
Наименование характеристики	Значение
Параметры электрического питания:	
- напряжение постоянного тока, В	от -9 до +9
Габаритные размеры, мм, не более	
- высота	36,5
- ширина	196
- глубина	57
Условия эксплуатации:	
- температура окружающей среды, °С	
нормальная	от -25 до +80
рабочая	от +18 до +28

Знак утверждения типа

наносят на титульный лист руководства по эксплуатации типографским способом и на корпус фотоспособом.

Комплектность средства измерений

Таблица 14 - Комплектность комплексов

Наименование	Количество, шт.			
Комплексы программно-технические DEWE2	1 (в заказной комплектации)			
Руководство по эксплуатации «Комплексы программно-технические DEWE2. Руководство	1			
по эксплуатации»	1			
Методика поверки «Комплексы программно- технические DEWE2. Методика поверки»	1			

Поверка

осуществляется по документу МП 201-021-2016 «Комплексы программно-технические DEWE2. Методика поверки», утвержденному Φ ГУП «ВНИИМС» 23.11.2016 г.

Основные средства поверки:

- калибратор многофункциональный Fluke 5700A, регистрационный номер в Федеральном информационном фонде (далее - рег. №) 52495-13;

- калибратор осциллографов Fluke 5820A (рег. № 23669-02);
- магазин электрического сопротивления 278620 (рег. № 43562-10);
- генератор импульсов АКИП-3305 (рег. № 43317-09);
- термометр ртутный стеклянный лабораторный ТЛ-4 (рег. № 303-91);
- мультиметр 3458А (рег. № 25900-03).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых комплексов с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные документы, устанавливающие требования к комплексам программнотехническим DEWE2

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

Изготовитель

«DEWETRON GmbH», Австрия

Юридический адрес: Parkring 4, 8074 Grambach, Austria

Телефон: +43 316 3070

Web-сайт: www.dewetron.com

Заявитель

ООО «БЛМ Синержи»

Юридический адрес: 107076, г. Москва, Колодезный пер., 3, стр. 26, оф. 212

Телефон: (495)781-39-39 Факс: (495)781-35-91 Web-сайт: www.blms.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д.46

Телефон: (495)437-55-77 Факс: (495)437-56-66 E-mail: office@vniims.ru Web-сайт: www.vniims.ru

Аттестат аккредитации Φ ГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «___ » _____ 2017 г.