

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

Датчик загазованности «ДЗК-04» модификаций ДЗК-04-СН₄, ДЗК-04-СН₄-ОС и ДЗК-04-Н₂S Методика поверки

НБКГ.413223.010 МП

СОДЕРЖАНИЕ

1 Операции поверки	3
2 Средства поверки	
3 Требования техники безопасности	
4 Условия поверки	
5 Подготовка к поверке	
6 Проведение поверки	
7 Оформление результатов поверки	

Настоящая методика распространяется на датчик загазованности «ДЗК-04» (датчик), модификаций ДЗК-04-СН₄, ДЗК-04-СН₄-ОС и ДЗК-04-Н₂S и определяет порядок проведения первичной и периодической поверки.

Интервал между поверками: для датчиков модификации ДЗК-04-С H_4 -ОС — 2 года, для датчиков модификаций ДЗК-04-С H_4 и ДЗК-04- H_2 S — 1 год.

1 ОПЕРАЦИИ ПОВЕРКИ

1.1 При поверке должны быть выполнены операции, указанные в табл. 1.1. Таблипа 1.1

No	Наименование операции	Номер пункта методики	Выполнен	ие операций
745	паименование операции		при первичной поверке	при периодической поверке
1	Внешний осмотр	6.1	Да	Да
2	Опробование	6.2	Да	Да
3	Идентификация программного обеспечения	6.3	Да	Да
4	Определение основной погрешности измерения датчика	6.4	Да	Да
5	Определение правильности формирования сигналов телеуправления	6.5	Да	Да

2 СРЕДСТВА ПОВЕРКИ

2.1 При проведении поверки должны применяться средства измерений и вспомогательное оборудование, указанные в табл.2.1 Таблица 2.1

№	Средства поверки	Примечания
1	Стандартные образцы состава газовые смеси в баллонах под давлением, ГСО №№ 10653-2015, 10536-2014	*
2	Рабочий эталон 1-го разряда генератор газовых смесей ГГС исполнений ГГС-Р, Госреестр № 62151-15	*
3	Ротаметр РМ Госреестр 19325-12	*
4	Секундомер СОСпр Госреестр 11519-11	*
5	Калибратор многофункциональный	*
	Вспомогательное оборудование	
	Газовая камера	
	Соединительные трубки до 2м на каждый газ	

Примечание:

- * допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемого СИ с требуемой точностью;
 - все средства измерения должны утвержденного типа и иметь действующие свидетельства о поверке, а испытательное оборудование аттестовано.

2.2 Измерение концентрации метана

При поверке датчика модификаций ДЗК-04-СН₄ и ДЗК-04-СН₄-ОС применять готовые ПГС в баллонах "метан в воздухе" по номенклатуре в соответствии с табл.2.2.

Таблица 2.2

№ IIIC	Номинальное содержание метана в смеси
ПГС1	чистый воздух
ПГС2	1,11,4 об.доли, %
ПГС3	2,22,5 об.доли,%

2.3 Измерение концентрации сероводорода

При поверке датчика модификации ДЗК-04-H₂S готовить ПГС "сероводород в воздухе" Количество,производительность, температура и расход газа-носителя

градуировочного устройства должны обеспечивать приготовление ПГС в соответствии с табл.2.3.

Таблица 2.3

№ IIIC	Номинальное содержание сероводорода в смеси
ПГС1	Чистый воздух
ПГС2	8.010.0 мг/м ³
ПГС3	18.020.0 мг/м ³
ПГС4	28.030.0 mg/m ³

Допускается использование баллонных ПГС «сероводород в воздухе» или «сероводород в азоте».

2.4 Поверка правильности формирования сигналов телеуправления

При поверке срабатывания сигналов телеуправления использовать ПГС в соответствии с номинальной величиной порогов срабатывания сигналов телеуправления.

3 ТРЕБОВАНИЯ ТЕХНИКИ БЕЗОПАСНОСТИ

- 3.1 К работе допускаются лица, изучившие руководства по эксплуатации системы контроля загазованности и входящих в нее составных частей, стандартных приборов, применяемых при испытаниях, а также прошедшие местный инструктаж по безопасности труда.
- 3.2 Все операции по монтажу и демонтажу технологического оборудования должны проводиться при отключенном сетевом питании оборудования и при отсутствии избыточного давления в газовых магистралях.
- 3.3 Для защитного заземления болты и клеммы, возле которых имеются знаки заземления, необходимо присоединить к контуру заземления, имеющемуся в помещении.
- 3.4 При работе следует соблюдать "Правила эксплуатации электроустановок потребителей" и «Правила устройства и безопасной эксплуатации сосудов, работающих под давлением».
- 3.5 Категорически запрещается курение и пользование открытым огнем в помещении для проведения газовых испытаний.

4 УСЛОВИЯ ПОВЕРКИ

- 4.1 Поверка должна осуществляться в следующих условиях:
- температура окружающего воздуха (25 ± 10) °C;
- атмосферное давление от 84,0 до 106,7 кПа (от 630 до 800 мм рт.ст.);
- относительная влажность воздуха от 45 до 80 %;
- вибрация, тряска, удары и магнитные поля, кроме земного, должны отсутствовать.
- 4.2 Если датчик находился в условиях, отличных от нормальных, то до начала проведения поверки датчик должен быть выдержан в нормальных условиях не менее 2 ч.

При необходимости допускается проводить ранее этого срока осмотр внешнего вида.

4.3 Поверка должна проводиться в отапливаемых помещениях, оборудованных приточно-вытяжной вентиляцией и сетевым напряжением 220 В переменного тока.

5 ПОДГОТОВКА К ПОВЕРКЕ

Проверяют наличие и исправность средств измерения и вспомогательного оборудования. Средства измерений должны иметь действующие свидетельства о поверке, подтверждающие их годность.

Проводят инструктаж персонала, участвующего в поверке.

Образцовые средства измерений и вспомогательное оборудование устанавливают в рабочее положение в соответствии с требованиями эксплуатационной документации на них.

6 ПРОВЕДЕНИЕ ПОВЕРКИ

- 6.1 Осмотр внешнего вида
- 6.1.1 При осмотре внешнего вида проверить:
- наличие и правильность оформления формуляра на датчик;
- соответствие номера на датчик номеру, указанному в паспорте;
- наличие и четкую видимость маркировок, отсутствие повреждений, а также пыли, грязи и посторонних предметов на составных частях датчика; состояние сальникового ввода кабеля и соединителя сенсора у датчика; отсутствие обрыва или повреждения изоляции кабеля.
 - 6.2 Опробование
 - 6.2.1 Поместите датчик в помещение с заведомо чистой атмосферой.
- 6.2.2 Подайте питание на датчик. При этом должен загореться дисплей на датчике. Индикатор состояния датчика должен гореть зеленым цветом.
- 6.2.3 Подключите калибратор многофункциональный в режиме измерения тока к клеммам выходного тока датчика. Показания на калибраторе должны соответствовать 4 мА.
- 6.2.4 Результаты опробования считают положительными, если выполняются все требования, изложенные в данном разделе.
 - 6.3 Идентификация программного обеспечения
 - 6.3.1 Подайте питание на датчик.
 - 6.3.2 Нажатием кнопки «Мепи» пульта управления перейти в режим настройки датчика.
- 6.3.3 Стрелками вверх и вниз выбрать пункт «ВЕРСИЯ ПО И КС» и нажать на кнопку «Enter»

6.3.4 Информация на дисплее должна соответствовать приведенной ниже

Идентификационные данные (признаки)	Значение			
Д3К-04-СН₄				
Идентификационное наименование ПО	. ДЗК-04-CH4			
Номер версии (идентификационный номер ПО)	1.1			
Цифровой идентификатор ПО	7367			
Д3К-04-CH ₄ -OC				
Идентификационное наименование ПО	ДЗК-04-СН4-ОС			
Номер версии (идентификационный номер ПО)	1.0			
Цифровой идентификатор ПО	4589			
Д3K-04-H ₂ S				
Идентификационное наименование ПО	ДЗК-04-H ₂ S			
Номер версии (идентификационный номер ПО)	1.0			
Цифровой идентификатор ПО	2316			

При положительных результатах идентификации программного обеспечения приступите к определению метрологических характеристик.

6.4 Определение основной погрешности измерения датчика.

- 6.4.1 Определение основной погрешности измерения датчика модификаций ДЗК-04-СН₄ и ДЗК-04-СН₄-ОС.
 - 6.4.1.1 Соберите схему, приведенную на рисунке 6.1.
 - 6.4.1.2 Подайте питание на датчик.
- 6.4.1.3 Перед подачей ПГС датчик должен проработать не менее 1 часа в чистой атмосфере при условиях испытания.
- 6.4.1.4 Подать на вход датчика метановые ПГС в следующем порядке: 1-2-3. Расход смеси установить в пределах 150-300 мл/мин. Время подачи каждой ПГС не менее 2 мин. Полученные результаты наблюдать на дисплее датчика и на дисплее многофункционального калибратора, фиксировать измерения в протоколе.
- 6.4.1.5 Пересчитать значения тока, измеренные с помощью многофункционального калибратора, по формуле:

$$A_{u3M} = 0.1875 \bullet (I_{u3M} - 4),$$

где:

 $A_{\mathcal{U}\mathcal{J}\mathcal{M}}$. - концентрация газа;

 $I_{_{\mathcal{U}3M}}$ - измеренное значение тока.

6.4.1.6 Рассчитать основную абсолютную погрешность для ПГС1 по формуле:

$$\Delta = A_{u_{3M}} - A_{3a\partial}$$

где:

Δ - основная абсолютная погрешность измерения;

 $A_{_{\mathcal{U}3M}}$ - измеренное значение концентрации;

 $A_{3a\partial}$. - заданное значение концентрации.

- 6.4.1.7 Основная абсолютная погрешность измерения должна быть не более $\pm 0,125$ об. долей, %.
- 6.4.1.8 Рассчитать основную относительную погрешность датчика γ для ПГС2 и ПГС3 по формуле:

$$\delta = \frac{A_{u3M.} - A_{3a\partial.}}{A_{3a\partial.}} \bullet 100\%,$$

где:

 δ - основная относительная погрешность измерения;

 $A_{3a\partial}$. - заданное значение концентрации.

- 6.4.1.9 Основная относительная погрешность измерения должна быть не более ± 10 %.
- 6.4.2 Определение основной погрешности измерения датчика модификации ДЗК-04-H2S
- 6.4.2.1 Соберите схему, приведенную на рисунке 1.
- 6.4.2.2 Подайте питание на датчик с помощью блока питания БП.
- 6.4.2.3 Перед подачей ПГС датчик должен проработать не менее 1 часа в чистой атмосфере при условиях испытания.
- 6.4.2.4 Подать на вход датчика сероводородные ПГС в следующем порядке: 1-2-3-4. Время подачи каждой ПГС не менее 2 мин. Полученные результаты наблюдать на дисплее датчика и на дисплее многофункционального калибратора, фиксировать измерения в протоколе.

- 6.4.3 Определение основной погрешности измерения датчика модификации ДЗК-04-Н2S
- 6.4.3.1 Соберите схему, приведенную на рисунке 1.
- 6.4.3.2 Подайте питание на датчик с помощью блока питания БП1.
- 6.4.3.3 Перед подачей ПГС датчик должен проработать не менее 1 часа в чистой атмосфере при условиях испытания.
- 6.4.3.4 Подать на вход датчика сероводородные ПГС в следующем порядке: 1-2-3-4. Время подачи каждой ПГС не менее 2 мин. Полученные результаты наблюдать на дисплее датчика и на дисплее многофункционального калибратора, фиксировать измерения в протоколе.
- 6.4.3.5 Пересчитать значения тока, измеренные с помощью многофункционального калибратора, по формуле:

$$A_{u3M} = 2.5 \bullet (I_{u3M} - 4),$$

где:

 A_{u3M} - концентрация газа;

 $I_{{\it u}{\it 3M}}$. - измеренное значение тока.

6.4.3.6 Рассчитать основную абсолютную погрешность для $\Pi\Gamma$ C1 и $\Pi\Gamma$ C2 по формуле:

$$\Delta = A_{u3M} - A_{3a\partial}$$

где:

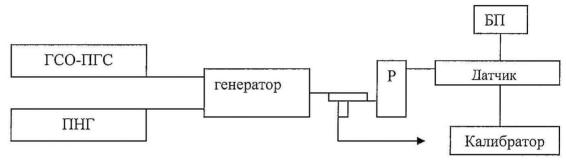
△ - основная абсолютная погрешность измерения;

 A_{3ad} - заданное значение концентрации.

- 6.4.3.7 Основная абсолютная погрешность измерения должна быть не более $\pm 1,5$ мг/м³.
- 6.4.3.8 Рассчитать основную относительную погрешность датчика δ для ПГС3 и ПГС4 по формуле:

$$\delta = \frac{A_{u3M.} - A_{3a\partial.}}{A_{3a\partial.}} \bullet 100\%,$$

где:


 δ - основная абсолютная погрешность измерения;

 $A_{uзм.}$ - измеренное значение концентрации;

 A_{3ad} . - заданное значение концентрации.

- 6.4.3.9 Основная относительная погрешность измерения должна быть не более ±10 %.
- 6.5 Поверка правильности срабатывания аварийного и предупредительного реле датчика
- 6.5.1 Соберите схему на рис. 1
- 6.5.2 Подайте питание на датчик с помощью блока питания БП1.
- 6.5.3 Перед подачей ПГС датчик должен проработать не менее 1 часа в чистой атмосфере при условиях испытания.
 - 6.5.4 Подайте ПГС на датчик в следующем порядке:
 - чистый воздух
 - ПГС в соответствии с предупредительной уставкой включения; продолжительность подачи не менее 1 мин;
- ПГС в соответствии с аварийной уставкой включения, продолжительность подачи не менее 1 мин;
- ПГС в соответствии с аварийной уставкой выключения, продолжительность подачи не менее 1 мин;
- ПГС в соответствии с предупредительной уставкой выключения, продолжительность подачи не менее 1 мин;

- 6.5.5 Фиксируйте время срабатывания реле после подачи соответствующей ПГС по индикатору состояния датчика (красный аварийный, желтый предупредительный).
- 6.5.6 Погрешность срабатывания сигнала телеуправления по номинальной величине не должна превышать основной погрешности датчика: для датчика модификаций ДЗК-04-СН₄ и ДЗК-04-СН₅-ОС:
 - -время срабатывания сигнала телеуправления не более 30 с.,
- —время отключения сигнала телеуправления не более 30 с. для датчика модификации ДЗК-04- H_2 S:
 - -время срабатывания сигнала телеуправления не более 45 с.,
 - -время отключения сигнала телеуправления не более 45 с.
- 6.5.7 Поверка считается успешной, если произошло срабатывание аварийных и предупредительных реле датчика.

ГСО-ПГС – баллон с исходной газовой смесью;

ПНГ – баллон с поверочным нулевым газом;

генератор – рабочий эталон 1-го разряда - генератор газовых смесей;

P – ротаметр;

БП – блок питания.

Рис.1- Схема поверки датчика

7 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 7.1 Результаты поверки оформляются протоколом поверки датчика, заверенным поверителем.
- 7.2 Положительные результаты поверки оформляются свидетельством о поверке установленной формы или заносятся в формуляр на датчик в раздел "Сведения о периодической поверке" и заверяются оттиском клейма поверителя.
- 7.3 Знак поверки наносится на свидетельство о поверке и (или) паспорт, и на головку одного из винтов, стягивающих корпус прибора в виде наклейки или оттиска клейма.
- 7.4 При отрицательных результатах поверки выпуск в обращение и применение датчиков запрещается и выдается извещение о непригодности с указанием причин.

Методика разработана:

инженер 1 категории отдела испытаний продукции ФБУ «Нижегородский ЦСМ»

Е.Г. Горбунов