ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Каскад-Энергосбыт» - Регионы (5 очередь)

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Каскад-Энергосбыт» - Регионы (5 очередь) (далее - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии и мощности, потребленной за установленные интервалы времени технологическим объектом, сбора, обработки, хранения, формирования отчетных документов и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, двухуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень - измерительно-информационные комплексы (ИИК), включающие в себя измерительные трансформаторы тока (далее - ТТ) по ГОСТ 7746-2001, трансформаторы напряжения (далее - ТН) по ГОСТ 1983-2001 и счетчики активной и реактивной электроэнергии по ГОСТ 30206-94, ГОСТ Р 52323-2005 в режиме измерений активной электроэнергии и по ГОСТ 26035-83, ГОСТ Р 52425-2005 в режиме измерений реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2 - 4.

2-й уровень - информационно-вычислительный комплекс (далее - ИВК), включающий в себя устройство сбора и передачи данных (далее - УСПД), устройство синхронизации системного времени УССВ-16HVS (далее - УССВ-16HVS), состоящего из GPS-приемника, сервер баз данных (далее - БД) АИИС КУЭ, каналообразующую аппаратуру, технические средства для организации локальной вычислительной сети и разграничения прав доступа к информации, автоматизированные рабочие места персонала (далее - АРМ) и программное обеспечение (далее - ПО) «АльфаЦЕНТР».

Первичные фазные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются усредненные значения активной мощности и среднеквадратические значения напряжения и тока за период 0,02 с. По вычисленным среднеквадратическим значениям тока и напряжения производится вычисление полной мощности за период. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на входы УСПД, где осуществляется хранение измерительной информации, ее накопление и передача накопленных данных

на верхний уровень системы, а также отображение информации по подключенным к УСПД устройствам.

В ИВК АИИС КУЭ производится сбор, обработка измерительной информации, в частности, вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление отчетных документов, отображение информации на мониторах АРМ и передача данных в организации участники оптового рынка электрической энергии и мощности, в том числе в АО «АТС», АО «СО ЕЭС» и смежным субъектам, через каналы связи с протоколом TCP/IP сети Internet в виде хml-файлов установленных форматов в соответствии с Приложением 11.1.1 к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мощности с использованием ЭП субъекта рынка.

АИИС КУЭ имеет систему обеспечения единого времени (далее - COEB). СОЕВ предусматривает поддержание единого календарного времени на всех уровнях системы (ИИК и ИВК). АИИС КУЭ оснащена УССВ-16HVS, синхронизирующим время УСПД по сигналам проверки времени, получаемым от GPS-приемника, входящего в состав УССВ-16HVS.

УСПД периодически сравнивает свое системное время с сигналом проверки времени, получаемым от GPS-приемника, входящего в состав УССВ-16HVS, корректировка часов УСПД осуществляется в независимости от наличия расхождения. Абсолютная погрешность хода внутренних часов УСПД составляет ±2 с при внешней синхронизации не реже 1 раза в час. Сличение показаний часов счетчиков и УСПД производится во время сеанса связи со счетчиками. Корректировка часов осуществляется при наличии расхождения более ±2 с, но не чаще 1 раза в сутки.

Сервер БД периодически сравнивает свое системное время со временем УСПД, корректировка часов сервера осуществляется при наличии расхождения ± 1 с.

Задержки в каналах связи составляют не более 0,2 с.

Погрешность хода часов АИИС КУЭ не превышает ±5 с.

Журналы событий счетчиков электроэнергии, УСПД и сервера отражают: время (дата, часы, минуты, секунды) до и после проведения процедуры коррекции часов устройств.

Программное обеспечение

В АИИС КУЭ используется ПО «АльфаЦЕНТР», в состав которого входят программы, указанные в таблице 1. ПО обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО..

Таблица 1 - Метрологические значимые модули ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	библиотека ас_metrology.dll
Номер версии (идентификационный номер) ПО	Не ниже 12.1
Цифровой идентификатор ПО	3E736B7F380863F44CC8E6F7BD211C54
Алгоритм вычисления цифрового идентификатора ПО	MD5

Метрологические характеристики ИК АИИС КУЭ, указанные в таблицах 3 - 4, нормированы с учетом ПО.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «средний» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики приведены в таблицах 2 - 4.

Таблица 2 - Состав измерительных каналов АИИС КУЭ

Номер ИК	Наименование	Состав измерительного канала					Вид элек-
Но	точки измерений	TT	TH	Счётчик	УСПД	Сервер	троэнергии
1	2	3	4	5	6	7	8
1	РТП «Словацкий дом» (10/0,4 кВ), ГРЩ-1-0,4 кВ, Ввод 1 от Т-4	ТШЛ-0,66-II 1500/5 Кл. т. 0,2S	-	A1802RL-P4GB-DW-4 Кл. т. 0,2S/0,5			активная реактивная
2	РТП «Словацкий дом» (10/0,4 кВ), ГРЩ-1-0,4 кВ, Ввод 2 от Т-3	ТШЛ-0,66-II 1500/5 Кл.т. 0,2S	-	A1802RL-P4GB-DW-4 Кл. т. 0,2S/0,5			активная реактивная
3	РТП «Словацкий дом» (10/0,4 кВ), ГРЩ-2-0,4 кВ, Ввод 1 от Т-2	ТШЛ-0,66-II 1500/5 Кл. т. 0,2S	-	A1802RL-P4GB-DW-4 Кл. т. 0,2S/0,5			
4	РТП «Словацкий дом» (10/0,4 кВ), ГРЩ-2-0,4 кВ, Ввод 2 от Т-1	ТШЛ-0,66-II 1500/5 Кл. т. 0,2S	-	A1802RL-P4GB-DW-4 Кл. т. 0,2S/0,5	RTU-325L	Hp Proliant DL320e Gen 8 v2	активная реактивная
5	ТП «Словацкий дом» (10/0,4 кВ), ГРЩ-1-0,4 кВ, Ввод 1 от Т-4	ТШП-0,66 2000/5 Кл. т. 0,2S	-	A1802RL-P4GB-DW-4 Кл. т. 0,2S/0,5			активная реактивная
6	ТП «Словацкий дом» (10/0,4 кВ), ГРЩ-1-0,4 кВ, Ввод 2 от Т-3	ТШП-0,66 2000/5 Кл. т. 0,2S	-	A1802RL-P4GB-DW-4 Кл. т. 0,2S/0,5			активная реактивная
7	ТП «Словацкий дом» (10/0,4 кВ), ГРЩ-2-0,4 кВ, Ввод 1 от Т-2	ТШП-0,66 2000/5 Кл. т. 0,2S	-	A1802RL-P4GB-DW-4 Кл. т. 0,2S/0,5			активная реактивная
8	ТП «Словацкий дом» (10/0,4 кВ), ГРЩ-2-0,4 кВ, Ввод 2 от Т-1	ТШП-0,66 2000/5 Кл. т. 0,2S	-	A1802RL-P4GB-DW-4 Кл. т. 0,2S/0,5			активная

Окончание таблицы 2

1	2	3	4	5	6	7	8
9	РП-6 (6 кВ), РУ-6 кВ, І с.ш., яч. № 1	ТЛК 200/5 Кл. т. 0,5S	НАМИ-10-95 УХЛ2 6000/100 Кл. т. 0,5	ПСЧ-4ТМ.05М.12 0,5S/1,0	RTU-325L	Hp Proliant DL320e	активная реактивная
10	РП-6 (6 кВ), РУ-6 кВ, II с.ш., яч. № 2А	ТЛК 200/5 Кл. т. 0,5S	НАМИТ-10-2 УХЛ2 6000/100 Кл. т. 0,5	ПСЧ-4ТМ.05М.12 Кл.т. 0,5S/1,0	K10-323L	Gen 8 v2	активная реактивная

Таблица 3 - Метрологические характеристики ИК (активная энергия)

таолица 5 - метрологические характеристики ит (активная энергия)								
		Метрологические характеристики ИК						
		Грани	цы инте	рвала	Границы интервала отно-			
		относительной ос-			сительной погрешности			
		новной погрешности			измерений в рабочих ус-			
Номер ИК	Диапазон тока	измере	измерений, соответ-		ловиях эксплуатации, со-			
		ствующие вероятно-			ответствующие вероятно-			
		сти Р	$=0.95(\pm 6)$	8), %	сти Р=0,95 (±δ), %			
		cos φ	cos φ	cos φ	cos φ	cos φ	cos φ	
		= 0,9	= 0.8	= 0,5	= 0,9	= 0.8	= 0,5	
	$I_{H_1} \leq I_1 \leq 1, 2I_{H_1}$	0,4	0,5	0,7	0,8	0,9	1,0	
1 - 8	$0,2I_{H_1} \le I_1 < I_{H_1}$	0,4	0,5	0,7	0,8	0,9	1,0	
	$0,1I_{H_1} \le I_1 < 0,2I_{H_1}$	0,6	0,6	1,0	0,9	1,0	1,2	
(ТТ 0,2S; Сч 0,2S)	$0,05I_{H_1} \le I_1 < 0,1I_{H_1}$	0,7	0,8	1,1	1,0	1,0	1,3	
	$0,02I_{H_1} \le I_1 < 0,05I_{H_1}$	1,1	1,2	1,9	1,3	1,4	2,1	
9; 10	$I_{H_1} \leq I_1 \leq 1, 2I_{H_1}$	1,1	1,4	2,3	1,9	2,1	2,7	
$0.2I_{H_1} \le I_1 < I_{H_1}$		1,1	1,4	2,3	1,9	2,1	2,7	
(TT 0,5S; TH 0,5;	$0,05I_{H_1} \le I_1 < 0,2I_{H_1}$	1,4	1,7	3,0	2,1	2,3	3,4	
Сч 0,5Ѕ)	$0.02I_{H_1} \le I_1 < 0.05I_{H_1}$	2,5	3,0	5,5	3,0	3,4	5,7	

Таблица 4 - Метрологические характеристики ИК (реактивная энергия)

Гаолица 4 - Метрологические характеристики ИК (реактивная энергия)								
		Метрологические характеристики ИК						
		Границы интервала			Границы интервала отно-			
		относительной ос-			сительной погрешности			
		новной погрешности			измерений в рабочих ус-			
Номер ИК	Диапазон тока	измерений, соответ-			ловиях эксплуатации, со-			
		ствующие вероятно-			ответствующие вероятно-			
		сти Р	$=0.95 (\pm$	δ), %	сти P=0,95 (±δ), %			
		cos φ	cos φ	cos φ	cos φ	cos φ	cos φ	
		=0,9	=0,8	=0,5	=0,9	=0,8	=0,5	
	IH ₁ ≤I ₁ ≤1,2IH ₁	0,9	0,7	0,6	1,2	1,1	1,0	
1 - 8	0,2IH₁≤I₁ <ih₁< td=""><td>0,9</td><td>0,8</td><td>0,6</td><td>1,3</td><td>1,1</td><td>1,0</td></ih₁<>	0,9	0,8	0,6	1,3	1,1	1,0	
	$0,1I_{H_1} \le I_1 < 0,2I_{H_1}$	1,3	1,0	0,8	1,8	1,4	1,2	
(ТТ 0,2S; Сч 0,5)	$0,05I_{H_1} \le I_1 < 0,1I_{H_1}$	1,5	1,2	0,9	2,2	1,7	1,4	
	$0,02I_{H_1} \le I_1 < 0,05I_{H_1}$	2,9	2,1	1,5	4,1	3,1	2,3	
0.10	IH ₁ ≤I ₁ ≤1,2IH ₁	2,7	2,1	1,5	4,3	3,9	3,6	
9; 10	0,2IH₁≤I₁ <ih₁< td=""><td>2,7</td><td>2,1</td><td>1,5</td><td>4,3</td><td>3,9</td><td>3,6</td></ih₁<>	2,7	2,1	1,5	4,3	3,9	3,6	
(TT 0,5S; TH 0,5; Сч 1,0)	$0,05I_{H_1} \le I_1 < 0,2I_{H_1}$	3,6	2,6	1,8	4,8	4,2	3,7	
(11 0,55, 111 0,5, C4 1,0)	$0.02I_{H_1} \le I_1 < 0.05I_{H_1}$	6,5	4,6	3,0	7,3	5,6	4,4	

Примечания:

- 1 Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2 В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
 - 3 Нормальные условия эксплуатации:
- параметры сети: диапазон напряжения (0,99-1,01) Uном; диапазон силы тока (0,02-1,2) Іном, частота $(50\pm0,15)$ Γ ц; коэффициент мощности $\cos \varphi = 0,5; 0,8; 0,9$ инд.;
 - температура окружающей среды:
 - для ТТ и ТН от минус 45 до плюс 40 °C;

- для счетчиков от плюс 21 до плюс 25 °C;
- для УСПД от плюс 15 до плюс 25 °C;
- для ИВК от плюс 15 до плюс 25 °C;
- магнитная индукция внешнего происхождения, не более 0,05 мТл.
- 4 Рабочие условия эксплуатации:

для ТТ и ТН:

- параметры сети: диапазон первичного напряжения (0,9-1,1) Uн₁; диапазон силы первичного тока (0,02-1,2) Ін₁; коэффициент мощности соз ϕ (sin ϕ) 0,5-1,0 (0,87-0,5); частота $(50\pm0,4)$ Γ ц;
 - температура окружающего воздуха от минус 45 до плюс 40 °C.
 - для счетчиков электроэнергии:
- параметры сети: диапазон вторичного напряжения (0,8-1,2) UH₂; диапазон силы вторичного тока (0,02-1,2) IH₂; коэффициент мощности соѕ ϕ (sin ϕ) 0,5-1,0 (0,87-0,5); частота $(50\pm2,5)$ Γ Ц;
 - температура окружающего воздуха от минус 40 до плюс 60 °C;
 - магнитная индукция внешнего происхождения, не более 0,5 мТл.
- 5 Погрешность в рабочих условиях указана для $\cos \varphi = 0.5$; 0,8; 0,9 инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии от плюс 5 до плюс 35 °C.
- 6 Допускается замена измерительных трансформаторов, счетчиков, УСПД, УССВ на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2. Замена оформляется актом в установленном собственником АИИС КУЭ порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- электросчётчик Альфа A1800 среднее время наработки на отказ не менее $T=120\ 000\ \mathrm{y}$, среднее время восстановления работоспособности $t = 2\ \mathrm{y}$;
- электросчётчик Π CЧ-4TM.05M среднее время наработки на отказ не менее T=140~000 ч, среднее время восстановления работоспособности tB = 2 ч;
- RTU-325L среднее время наработки на отказ не менее $T=100\ 000\ v$, среднее время восстановления работоспособности $t=2\ v$;
- УССВ-16HVS среднее время наработки на отказ не менее T= 44 000 ч, среднее время восстановления работоспособности tв = 2 ч;
- сервер Hp Proliant DL320e Gen 8 v2 среднее время наработки на отказ не менее 260 000 ч, среднее время восстановления работоспособности tb = 0.5 ч. Надежность системных решений:
- защита от кратковременных сбоев питания УСПД, сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
- коррекции времени в счетчике;
- журнал УСПД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и УСПД;
 - пропадание и восстановление связи со счетчиком.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - УСПД;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- сервере (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована);
- о состоянии средств измерений.

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях не менее 113 суток; при отключении питания не менее 10 лет;
- УСПД глубина хранения тридцатиминутных приращениях электроэнергии 45 суток.
- сервер БД хранение результатов измерений, состояний средств измерений не менее 3,5 лет (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) ООО «Каскад-Энергосбыт» - Регионы (5 очередь) типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 5.

Таблица 5 - Комплектность АИИС КУЭ

Наименование	Тип	Рег. №	Количество, шт.
1	2	3	4
Трансформаторы тока	ТШЛ-0,66	3422-06	12
Трансформаторы тока	ТШП-0,66	15173-06	12
Трансформаторы тока	ТЛК	42683-09	4
Трансформаторы напряжения	НАМИ-10-95 УХЛ2	20186-05	1
Трансформаторы напряжения	НАМИТ-10	16687-07	1
Счетчики электрической энергии трехфазные многофункциональные	Альфа А1800	31857-06	8

Окончание таблицы 5

1	2	3	4
Счетчики электрической энергии многофункциональные	ПСЧ-4ТМ.05М	36355-07	2
Устройства сбора и передачи данных	RTU-325L	37288-08	1
Устройства синхронизации системного времени	УССВ-16HVS	-	1
Программное обеспечение	«АльфаЦЕНТР»		1
Сервер баз данных	Hp Proliant DL320e Gen 8 v2	-	1
Методика поверки	-	-	1
Формуляр	КЭКУ.422231.008 ФО	-	1

Поверка

осуществляется по документу МП 206.1-061-2016 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Каскад-Энергосбыт» - Регионы (5 очередь). Измерительные каналы. Методика поверки», утвержденному ФГУП «ВНИИМС» в сентябре 2016 г.

Основные средства поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009. «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений»;
- по МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений»;
- счетчиков Альфа A1800 по документу МП-2203-0042-2006 «Счетчики электрической энергии трехфазные многофункциональные Альфа A1800. Методика поверки», утвержденному руководителем ГЦИ СИ «ВНИИМ им. Д.И. Менделеева» 19 мая 2006 г.;
- счетчиков ПСЧ-4ТМ.05М по документу ИЛГШ.411152.146РЭ1, являющемуся приложением к руководству по эксплуатации ИЛГШ.411152.146РЭ, согласованному с руководителем ГШИ СИ ФБУ «Нижегородский ЦСМ» 20.11.2007 г.;
- RTU-325L по документу «Устройства сбора и передачи данных RTU-325 и RTU-325L. Методика поверки ДЯИМ.466.453.005МП», утвержденному ГЦИ СИ ФГУП «ВНИИМС» в 2008 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS) (Рег. № 27008-04);
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус $20~^{\circ}$ С до плюс $60~^{\circ}$ С, дискретность $0.1~^{\circ}$ С; диапазон измерений относительной влажности от 10~% до 100~%, дискретность 0.1~%;
- миллитесламетр портативный универсальный ТПУ: диапазон измерений магнитной индукции от 0,01 до 19,99 мТл.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих-кодом и (или) оттиска клейма поверителя.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе «Методика измерений количества электрической энергии (мощности) с использованием автоматизированной информационно-измерительной системы коммерческого учета электрической энергии ООО «Каскад-Энергосбыт» - Регионы (5 очередь), аттестованной АО ГК «Системы и технологии», аттестат об аккредитации N POCC RU.0001.310043 от 17.07.2012 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «Каскад-Энергосбыт» - Регионы (5 очередь)

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

Изготовитель

ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ «КАСКАД ИНЖИНИРИНГ» (ООО «КАСКАД ИНЖИНИРИНГ»)

ИНН: 4029047633

Адрес: 248008, г. Калуга, ул. Механизаторов, д. 38

Тел.: (4842) 71-60-04

Заявитель

Акционерное общество Группа Компаний «Системы и технологии»

(АО ГК «Системы и Технологии»)

ИНН: 3327304235

Адрес: 600026, г. Владимир, ул. Лакина, д. 8

Тел./ факс: (4922) 33-67-66/ 42-45-02

E-mail: st@sicon.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119631, г. Москва, ул. Озерная, д.46

Тел/факс: (495)437-55-77 / 437 56 66 E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «___ » _____ 2016 г.