УТВЕРЖДАЮ

Генеральный директор ООО «Автонрогресс–М»

А.С. Никитин

2016 г.

Аппаратура геодезическая спутниковая Leica Zeno 20

Методика поверки

МП АПМ 90-15

1. Методика поверки

Настоящая методика поверки распространяется на аппаратуру геодезическую спутниковую Leica Zeno 20, производства компании «Leica Geosystems AG», Швейцария (далее – аппаратура) и устанавливает методику её первичной и периодической поверки.

Интервал между поверками 1 год.

2. Операции поверки

При проведении поверки должны выполняться операции, указанные в таблице 1.

Таблица 1.

N_0N_0	Наименование операции	Проведение	операций при
пункта		первичной	периодической
		поверке	поверке
8.1.	Внешний осмотр	Да	Да
8.2.	Опробование	Да	Да
8.3.	Определение абсолютной и средней квадратической погрешностей измерений расстояний в режимах «Статика»	Да	Да
8.4.	Определение абсолютной и средней квадратической погрешностей измерений расстояний в режимах «Кинематика в реальном времени (RTK)»	Да	Да
8.5.	Определение абсолютной и средней квадратической погрешностей измерений расстояний в режиме «Дифференциальные кодовые измерения (DGPS)»	Да	Да

3. Средства поверки

При проведении поверки должны применяться эталоны, приведённые в таблице 2.

Таблица 2.

№ пункта	Наименование эталонов и их основные метрологические
документа	и технические характеристики
по поверке	
8.1	Эталоны не применяются
8.2	Эталоны не применяются
8.3-8.5	Фазовый светодальномер (тахеометр электронный) 1 разряда по ГОСТ Р 8.750-2011
8.3-8.4	Рулетка РЗНЗК по ГОСТ 7502-98

Допускается применять другие средства поверки, обеспечивающие определение метрологических характеристик с точностью, удовлетворяющей требованиям настоящей методики поверки.

4. Требования к квалификации поверителей

К проведению поверки допускаются лица, изучившие эксплуатационные документы на аппаратуру, имеющие достаточные знания и опыт работы с ней.

5. Требования безопасности

При проведении поверки, меры безопасности должны соответствовать требованиям по технике безопасности согласно эксплуатационной документации на аппаратуру, поверочное оборудование, правилам по технике безопасности, которые действуют на месте проведения поверки и правилам по технике безопасности при производстве топографо-геодезических работ ПТБ-88 (Утверждены коллегией ГУГК при СМ СССР 09.02.1989 г., № 2/21).

6. Условия проведения поверки

При проведении поверки должны соблюдаться следующие нормальные условия измерений:

- температура окружающей среды, °С (20±5)
- относительная влажность воздуха, % не более 80

- изменение температуры окружающей среды во время измерений, °С/чне более 2

Полевые измерения (измерения на открытом воздухе) должны проводиться: при отсутствии осадков и порывов ветра и в климатических условиях, соответствующих рабочим условиям применения указанных в эксплуатационной и технической документации на аппаратуру и на средства их поверки.

7. Подготовка к поверке

Перед проведением поверки должны быть выполнены следующие подготовительные работы:

- проверить наличие действующих свидетельств о поверке на средства поверки;
- аппаратуру и средства поверки привести в рабочее состояние в соответствии с их эксплуатационной документацией;

8. Проведение поверки

8.1. Внешний осмотр

При внешнем осмотре должно быть установлено соответствие аппаратуры следующим требованиям:

- отсутствие коррозии, механических повреждений и других дефектов, влияющих на эксплуатационные и метрологические характеристики аппаратуры;
- наличие маркировки и комплектности согласно требованиям эксплуатационной документации на аппаратуру.

8.2. Опробование

При опробовании должно быть установлено соответствие аппаратуры следующим требованиям:

- отсутствие качки и смещений неподвижно соединенных деталей и элементов аппаратуры;
- правильность взаимодействия с комплектом принадлежностей;
- работоспособность всех функциональных режимов;
- идентификационные данные программного обеспечения (далее ПО) должны соответствовать данным, приведённым в таблице 3.

Таблица 3.

Идентификационное наименование ПО	«Leica Ze- no Mobile»	«Leica Ze- no Connect»	«Leica Ze- no Field»	«Mobile MapWorks »	«Field Ge- nius»	«Collector for ArcGIS»
Номер версии (идентификационный номер ПО), не ниже	1.3.0	2.3.0	3.3.1	15.2.0	8.1.15	10.3.6

Идентификационное наименование ПО	«Leica Zeno Office»	«Leica Geo Office»	«Leica Infinity»
Номер версии (иден-			
тификационный номер	3.3.0	8.4.0	1.3.1
ПО), не ниже			

Идентификация встроенного ПО «Leica Zeno Mobile» осуществляется через интерфейс пользователя путём: Создать проект "+" --> Новый проект --> Ввести имя проекта --> ОК --> Открыть проект --> Боковое меню "Слайдер" --> "О программе" --> Строка "Информация о версии".

Идентификация встроенного ПО «Leica Zeno Connect» осуществляется через интерфейс пользователя путём: Запустить ПО --> Кнопка "Настройки" --> "О программе" --> "Инфо о версии".

Идентификация встроенного ПО «Leica Zeno Field» осуществляется через интерфейс пользователя путём: Запустить ПО Zeno Field --> Вкладка "Основные инструменты" --> Вкладка "Подключения GNSS-антенны"--> "About Zeno Field".

Идентификация встроенного ПО «Mobile MapWorks» осуществляется через интерфейс

пользователя путём: Запустить ПО Mobile MapWorks --> Настройки --> "О программе" --> "Информация о версии".

Идентификация встроенного ПО «Field Genius» осуществляется через интерфейс пользователя путём: Запустить ПО --> "О версии".

Идентификация встроенного ПО «Collector for ArcGIS»осуществляется через интерфейс пользователя путём: Запустить ПО Collector --> Главное меню --> "О приложении" --> Collector for ArcGIS.

Идентификация ПО «Leica Zeno Office» производится через интерфейс пользователя путем выбора «Help» -> «О Zeno Office».

В появившемся диалоговом окне программы отображается наименование и версия ПО.

Идентификация ПО «Leica Geo Office» производится через интерфейс пользователя путем выбора «Справка» -> «О программе».

В появившемся диалоговом окне программы отображается наименование и версия ПО.

Идентификация ПО «Leica Infinity» производится через интерфейс пользователя путем выбора «Help & Support» -> «About Leica Infinity».

В появившемся диалоговом окне программы отображается наименование и версия ПО.

8.3. Определение абсолютной и средней квадратической погрешностей измерений расстояний в режимах «Статика»

Абсолютная и средняя квадратическая погрешности измерений расстояний в режимах «Статика» определяется измерением не менее двух линий линейного базиса, действительные длины которых расположены в диапазоне (0,1-3,0) км.

Установить образцы аппаратуры над центрами пунктов эталонного базиса. Измерить высоту установки аппаратуры над центрами пунктов с помощью рулетки.

Включить аппаратуру и настроить её на сбор данных (измерений) в соответствующем режиме измерений, согласно требованиям руководства по эксплуатации.

Убедиться в нормальном ее функционировании и отсутствии помех приему. При наличии помех устранить их.

Провести измерения на образцах аппаратуры одновременно и при условиях, указанных в таблице 4 Выключить аппаратуру, согласно требованиям руководства по эксплуатации

Выполнить обработку наблюдений с использованием штатного ПО к аппаратуре.

Абсолютная и средняя квадратическая погрешности измерений расстояний в режимах «Статика» вычисляется по формуле:

$$\Delta_{1i} = S_i - S_{0i}$$
, где

 Δ_{lj} - значение абсолютной погрешности измерений расстояний, мм;

 S_{0} - эталонное (действительное) значение j-й линии, мм;

 S_{j} - измеренное значение j-й линии, мм;

Полученное значение Δ_{Ij} не должно превышать значений абсолютной погрешности и удвоенных значений средней квадратической погрешности, указанных в описании типа.

8.4. Определение абсолютной и средней квадратической погрешностей измерений расстояний в режиме «Кинематика в реальном времени (RTK)»

Абсолютная погрешность измерений расстояний в режиме «Кинематика в реальном времени (RTK)» определяется не менее чем 10-и кратным измерением линии линейного базиса, действительная длина которой расположена в диапазоне (0,1-3,0) км.

Установить образцы аппаратуры над центрами пунктов эталонного базиса. Измерить высоту установки аппаратуры над центрами пунктов с помощью рулетки.

Включить аппаратуру и настроить её на сбор данных (измерений) в соответствующем режиме измерений, согласно требованиям руководства по эксплуатации.

Убедиться в нормальном ее функционировании и отсутствии помех приему. При наличии помех устранить их.

Провести измерения на образцах аппаратуры одновременно и при условиях, указанных в таблице 4 Выключить аппаратуру, согласно требованиям руководства по эксплуатации

Выполнить обработку наблюдений с использованием штатного ПО к аппаратуре.

Абсолютная погрешность измерений расстояний в режиме «Кинематика в реальном времени (RTK)» вычисляется по формуле:

$$\Delta_{3j} = S_j - S_{0j}$$
, где

 Δ_{3j} - значение абсолютной погрешности измерений расстояний, мм;

 $S_{0,i}$ - эталонное (действительное) значение j-й линии, мм;

 S_{i} - измеренное значение j-й линии, мм;

За окончательный результат принять наибольшее полученное значение Δ_{3j}

Средняя квадратическая погрешность измерений расстояний в режиме «Кинематика в реальном времени (RTK)» определяется по формуле:

$$m_{3j} = \sqrt{\frac{\sum (S_j - S_{0j})^2}{n}}, soe$$

*m*_{3j} - значение средней квадратической погрешности измерений расстояний, мм;

 S_{j} - измеренное значение j-й линии, мм;

количество измерений ј-й линии.

Полученное значение Δ_{3j} не должно превышать значений абсолютной погрешности, указанных в описании типа.

Полученное значение m_{3j} не должно превышать удвоенных значений средней квадратической погрешности, указанных в описании типа.

8.5. Определение абсолютной и средней квадратической погрешностей измерений расстояний в режиме «Дифференциальные кодовые измерения (DGPS)»

Абсолютная и средняя квадратическая погрешности измерений расстояний в режиме «Дифференциальные кодовые измерения (DGPS)» определяется не менее чем 10-и кратным измерением линии линейного базиса, действительная длина которой расположена в диапазоне (0,1-3,0) км.

Установить образцы аппаратуры над центрами пунктов эталонного базиса. Измерить высоту установки аппаратуры над центрами пунктов с помощью рулетки.

Включить аппаратуру и настроить её на сбор данных (измерений) в режиме «Дифференциальные кодовые измерения (DGPS)», согласно требованиям руководства по эксплуатации.

Убедиться в нормальном ее функционировании и отсутствии помех приему. При наличии помех устранить их.

Провести измерения на образцах аппаратуры одновременно и при условиях, указанных в таблице

Выключить аппаратуру, согласно требованиям руководства по эксплуатации Выполнить обработку наблюдений по штатному ПО к аппаратуре.

Абсолютная погрешность измерений расстояний в режиме «Дифференциальные кодовые измерения (DGPS)» вычисляется по формуле:

$$\Delta_{4j} = S_j - S_{0j}$$
, где

 Δ_{4j} - значение абсолютной погрешности измерений расстояний, мм;

- эталонное (действительное) значение ј-й линии, мм;

 S_{i} - измеренное значение j-й линии, мм;

Полученное значение Δ_{4j} не должно превышать значений абсолютной погрешности и удвоенных значений средней квадратической погрешности, указанных в описании типа.

Таблица 4

Режим измерений	Кол-во спут-	Время изме-	Интервал меж-
	ников, шт.	рений, мин.	ду эпохами, с.
Статика		30÷60	1
Кинематика в реальном времени (RTK)	>6		
Дифференциальные кодовые измерения	≥ 6	0,05÷0,20	1
(DGPS)			

^{* -} Поверка проводится при устойчивом закреплении аппаратуры над пунктами, открытом небосводе, отсутствии электромагнитных помех и многолучевого распространения сигналов спутников, а также хорошей конфигурации спутниковых группировок

9. Оформление результатов поверки

- 9.1. Результаты поверки оформляются протоколом, составленным в виде сводной таблицы результатов поверки по каждому пункту раздела 8 настоящей методики поверки с указанием числовых значений результатов измерений и их оценки по сравнению с допускаемыми значениями. Рекомендуемый образец протокола поверки приведен в Приложении.
- 9.2. При положительных результатах поверки, аппаратура признается годной к применению и на неё выдается свидетельство о поверке установленной формы с указанием фактических результатов определения метрологических характеристик. Знак поверки наносится на свидетельство о поверке в виде наклейки и (или) оттиска поверительного клейма.
- 9.3. При отрицательных результатах поверки, аппаратура признается непригодной к применению и на неё выдается извещение о непригодности установленной формы с указанием основных причин.

Инженер ООО «Автопрогресс-М»

Ckfe -

Скрипкина Т.А.

ПРИЛОЖЕНИЕ (Рекомендуемый образец протокола поверки)

ПРОТОКОЛ №

Дата и время проведения поверки:

Условия проведения поверки:

Внешний осмотр:

Требования	Результаты поверки
отсутствие коррозии, механических повреждений и других дефектов, влияющих на эксплуатационные и метрологические характеристики аппаратуры	
наличие маркировки и комплектности согласно требованиям эксплуатационной документации на аппаратуру	

Опробование:

Требования	Результаты поверки
отсутствие качки и смещений неподвижно соединенных деталей и элементов аппаратуры	
правильность взаимодействия с комплектом принадлежностей	
работоспособность всех функциональных режимов	
наименование ПО, номер его версии	

Результаты поверки в режиме «Статика»:

Эталонное значение базиса, мм		Результат измерений, мм		Погрешность измерений, мм		Заявляемое тре- бование абсолют- ной погрешности, не более, мм		Заявляемое требование удвоенной средней квадратической погрешности, не более, мм	
в плане	по высоте	в плане	по высоте	в плане	по высоте	в плане	по высоте	в плане	по высоте

Результаты поверки в режиме «Кинематика в реальном времени (RTK)»:

гезультать	і поверки в	режиме «ки	нематика в	реальном вр	DEMEHII (KIK	<i>J</i> ".	
Эталонное значение базиса, мм		Результат измере- ний, мм		Погрешность измерений, мм		Заявляемое требование аб солютной погрешности, н более, мм	
в плане	по высоте	в плане	по высоте	в плане	по высоте	в плане	по высоте

Средняя квадратическая погрешность измерений в плане, мм — ... Заявляемое требование удвоенной средней квадратической погрешности в плане, мм — ... Средняя квадратическая погрешность измерений по высоте, мм — ... Заявляемое требование удвоенной средней квадратической погрешности по высоте, мм — ...

Результаты испытаний в режиме «Дифференциальные кодовые измерения (DGPS)»:

Эталонное значение базиса, мм	Результат измерений, мм	Погрешность измерений, мм	Заявляемое требование абсолютной погрешности, не более, мм
	*		

Средняя квадратическая погрешность измерений, мм - ...

Заявляемое требование удвоенной средней квадратической погрешности, мм - ...