УТВЕРЖДАЮ

денерголед»

М.В. Ражев

— «Энерголед 23. 2016 г.

УТВЕРЖДАЮ

Генеральный директор

3.40 КИП «МЦЭ»

общест — А.В. Федоров

правотический з 3 — 2016 г.

центр — мергоресурсов — 2016 г.

Счётчики электрической энергии статические однофазные ГРАНИТ

Методика поверки ХЖ 2.720.009 МП л р. G4012-16

Разработал: Начальник жинического отдела ООО «Энерголед» К.А. Комаров

Настоящая методика поверки распространяется на счётчики электрической энергии статические однофазные ГРАНИТ (в дальнейшем - счётчики) класса точности 1 по активной энергии и устанавливает методику их обязательной первичной и периодической поверок.

Счётчики выпускаются по техническим условиям XЖ 2.720.009-2015 ТУ в соответствии с требованиями Γ OCT 31818.11-2012 и Γ OCT 31819.21-2012.

Первичную и периодическую поверку осуществляют аккредитованные в соответствии с законодательством Российской Федерации об аккредитации в национальной системе аккредитации юридические лица и индивидуальные предприниматели.

Интервал между поверками 16 лет.

1Операции поверки

1.1 При проведении поверки должны быть выполнены операции, указанные в таблице 1.

Таблица 1.

Операции	Номер пункта настоящей методики	Обязательность выполнения операции при поверке	
		первичной	периодической
Внешний осмотр	6.1	Да	Да
Проверка электрической прочности изоляции	6.2	Да	Да
Опробование и проверка функционирования	6.3	Да	Да
Проверка соответствия программного обеспечения (ПО) средства измерений	6.4	Да	Да
Проверка порога чувствительности	6.5	Да	Да
Проверка отсутствия самохода	6.6	Да	Да
Проверка основной относительной погрешности счётчика при измерении электроэнергии	6.7	Да	Да
Проверка погрешности хода встроенных часов и переключения тарифных зон	6.8	Да	Да

- 1.2 При получении отрицательного результата в процессе выполнения любой из операций поверки счётчик бракуют и его поверку прекращают.
- 1.3 После устранения недостатков, вызвавших отрицательный результат, счётчик вновь представляют на поверку.

2 Средства поверки

2.1 При проведении поверки должны быть применены средства, указанные в таблице 2.

Таблица 2.

Наименование операции	Наименование средств поверки,
	основные технические характеристики
1 Внешний осмотр.	Визуально
2 Проверка электрической	Установка пробойная универсальная УПУ-10:
прочности изоляции.	испытательное напряжение до 10 кВ, погрешность
	установки напряжения ±5 %.
	Секундомер СОС ПР-2Б: время измерения более 30 мин,
	цена деления 0,2 с, класс точности 2.
3 Опробование:	Установка автоматическая многофункциональная для
- проверка функционирования;	поверки электросчётчиков DJ-101 (рег. № 28066-04 в ФИФ
- проверка соответствия ПО	СИ РФ), пределы допускаемой относительной погрешности
	измерения электрической энергии ± 0,2 %.
	Персональный компьютер IBM PC.
	Программное обеспечение для ПК «Control» на CD.
	Программное обеспечение для ПК «SetCounter» на CD.

Наименование операции	Наименование средств поверки,	
	основные технические характеристики	
4 Определение метрологических	Установка автоматическая многофункциональная для	
характеристик:	поверки электросчётчиков DJ-101.	
- основной относительной	Персональный компьютер ІВМ РС.	
погрешности счётчика при	Программное обеспечение для ПК «Control» на CD.	
измерении электроэнергии;	Программное обеспечение для ПК «SetCounter» на CD.	
- стартового тока;	Частотомер Ч3-63/1 (рег. № 9084-90 в ФИФ СИ РФ);	
- отсутствия самохода;	диапазон измеряемых частот импульсного сигнала 0,1 Гц	
- погрешности хода встроенных	- 200 МГц, погрешность измерения частоты не более	
часов и переключения тарифных	$\pm 5.10^{-7} \pm 1$ ед. сч.	
зон		

- 2.1.1 Допускается использование других средств поверки, обеспечивающих допустимые погрешности измерений и требуемые режимы поверки.
- 2.2 Все средства измерений (эталоны единиц величин) должны быть поверены (аттестованы) в установленном порядке и иметь действующие свидетельства о поверке или знак поверки.

3 Требования к квалификации поверителей

3.1 К поверке счётчиков допускаются лица, прошедшие аттестацию в качестве поверителей в установленном порядке.

4 Требования безопасности

- 4.1 В целях обеспечения безопасности при проведении поверки соблюдать требования ГОСТ 8.584-2004 и «Правил техники безопасности при эксплуатации электроустановок».
- 4.2 Обслуживающий персонал должен иметь квалификационную группу по электробезопасности не ниже III.

5 Условия поверки

5.1 Поверку следует проводить в нормальных условиях применения, приведенных в таблице 3.

Таблица 3.

Влияющая величина	Нормальные значения
Температура окружающего воздуха, °С	20 ± 5
Относительная влажность воздуха, %	30-80
Атмосферное давление, кПа (мм рт. ст.)	84-106,7 (630-800)
Частота сети, Гц	$50 \pm 0.5 (60 \pm 0.6)$
Внешнее магнитное поле	отсутствует
Коэффициент искажения формы кривой синусоидального напряжения и тока, %	Не более 5
Отклонение напряжения от среднего значения, %	± 1
Отклонение тока от среднего значения, %	± 1

Для контроля климатических условий испытаний использовать: термометр ТЛ-4 ГОСТ 2854-90, (10-50) °C с ценой деления 1 °C, психрометр аспирационный электрический М-34 по ТУ 25.1607.054.85, барометр-анероид БАММ-1 по ТУ 25.04.1513-79.

6 Проведение поверки

6.1 Внешний осмотр.

Фотографии общего вида счётчиков ГРАНИТ приведены на рисунках 1 и 2.

Рисунок 1 - Общий вид счётчиков ГРАНИТ-1М, ГРАНИТ-1МЭ, ГРАНИТ-2М

Рисунок 2 - Общий вид счётчиков ГРАНИТ-1, ГРАНИТ-19, ГРАНИТ-2

- 6.1.1 При внешнем осмотре проверить комплектность (в соответствии с паспортом), маркировку, наличие схемы подключения счётчика, отметки о приёмке отделом технического контроля или о выполнении регламентных работ.
 - 6.1.2 В маркировке счётчика должны быть отражены:
 - товарный знак предприятия изготовителя;
 - обозначение типа счётчика;
 - изображение Знака утверждения типа;
 - изображение Знака соответствия по ГОСТ Р 50460;
- графическое обозначение числа фаз и проводов цепи, для которой счётчик предназначен, согласно ГОСТ 25372 однофазная, двухпроводная;
 - номер счётчика по системе нумерации предприятия изготовителя;
 - год изготовления;
 - номинальное напряжение;

- базовый и максимальный ток;
- номинальная частота:
- класс точности по ГОСТ 8.401;
- знак Д для счётчиков в изолирующем корпусе класса защиты II;
- испытательное напряжение изоляции (символ С2 по ГОСТ 23217);
- условное обозначение измеряемой энергии (кВт·ч);
- постоянная счётчика;
- обозначение стандарта исполнения (надпись «ГОСТ 31818.11-2012, ГОСТ 31819.21-2012»).
- 6.1.3 На корпусе и крышке клеммной колодки счётчика должны быть места для пломбировки и нанесения знака поверки (рис. П1 и рис. П.2), все крепящие винты должны быть в наличии, резьба винтов должна быть исправна, а механические элементы хорошо закреплены, не должно быть повреждений и коррозии.
- 6.1.4 При периодической поверке проконтролировать, чтобы батарея резервного питания была заменена на новую, со сроком годности не менее 16 лет.
 - 6.2 Проверка электрической прочности изоляции.

Проверку электрической прочности изоляции при воздействии переменного напряжения проводить с помощью установки УПУ-10 путем подачи испытательного напряжения 4.0 kB переменного тока частотой (50 ± 1) Γ ц между всеми соединенными между собой зажимами цепей тока и напряжения счётчика и «землей» в течение одной минуты.

- 6.2.1 «Землей» является проводящая пленка из фольги, охватывающая счётчик и присоединенная к плоской проводящей поверхности, на которую устанавливается цоколь счётчика. Проводящая пленка должна находиться от зажимов и отверстий для проводов на расстоянии не более 20 мм.
 - 6.2.2 Испытательный выход счётчика соединять с «землей».
- 6.2.3 Счётчик считают выдержавшим испытания, если не произошло пробоя или перекрытия изоляции. Допускается при проведении испытания появление «короны» или шума.
 - 6.3 Опробование и проверка функционирования
- 6.3.1 Установить счётчик на поверочную установку «DJ-101» в соответствии со схемой его подключения, приведенной в руководстве по эксплуатации счётчика, и эксплуатационными документами на поверочную установку и прогреть при номинальных значениях напряжения, тока и частоты. Время прогрева счётчика должно быть не менее 5 мин.

Зарегистрировать наличие импульсов на испытательном выходе или светодиодном индикаторе (свидетельствует о его работоспособности) и срабатывание счётного механизма.

6.3.2 При включении счётчика в течение 1,5 с включается индикатор и все элементы цифро-знаковой индикации, указанные в руководстве по эксплуатации счётчика (РЭ).

Убедиться, что через 1,5 с после включения счётчик определяет номер тарифа по текущей дате, тарифному расписанию текущего (или исключительного) дня недели и приступает к регистрации энергии в текущем тарифе.

6.3.3 Правильность работы счётного механизма счётчика проверяют по приращению показаний счётного механизма счётчика и числу включений светодиода, включающегося с частотой испытательного выходного устройства (числу импульсов на испытательном выходе) при подаче на счётчик приращения энергии в 0,1 киловатт-час.

Результат проверки считают положительным, если на каждое изменение состояния счётного механизма происходит N срабатываний светодиода в соответствии с формулой (1):

$$N = K \cdot A \tag{1}$$

где A – постоянная счётчика (число импульсов испытательного выходного устройства счётчика на $1 \text{kBt} \cdot \text{ч}$), равная 3200 имп. / $\text{kBt} \cdot \text{ч}$ или 6400 имп./ $\text{kBt} \cdot \text{ч}$ (в соответствии со сведениями в паспорте счётчика), K=0,1 $\text{kBt} \cdot \text{ч}$.

6.3.3.1 Проверку правильности работы счётного механизма многотарифного счётчика проводить для каждого из тарифов.

- 6.4 Проверка соответствия программного обеспечения средства измерений
- 6.4.1 Проверку соответствия программного обеспечения (ПО) проводят для встроенного в счётчике ПО, а также для внешнего ПО «Control» / «SetCounter».
- 6.4.2 Проверку соответствия встроенного ПО производят путём сравнения данных, указанных в эксплуатационной документации (Руководство по эксплуатации ХЖ 2.720.009 РЭ, п. 2.1.4) с данными в Таблице 4.
 - 6.4.3 Для проверки соответствия внешнего ПО «Control» / «SetCounter» необходимо:
- 1. Открыть файл control.exe / SetCounter.exe, находящийся в папке программы ПО «Control» / «SetCounter», установленной на ПК.
 - 2. Найти номер версии в свойствах файла.
- 3. Вычислить цифровой идентификатор с помощью алгоритма MD5 и сравнить с данными, указанными в Таблице 4.

Таблина 4.

Идентификационные данные	Значение		
(признаки)	Встроенное ПО Внешнее ПО		нее ПО
Идентификационное наименование ПО	ХЖ3.720.009ПО	Control	SetCounter
Номер версии (идентифика- ционный номер) ПО	a-300610	1.0.0.4	30062010
Цифровой идентификатор ПО	*	53c77f5dc6fbe1e 679ff393c1f9f2a6f	f5f74de2860067ee 14001d008c9927ba
Алгоритм вычисления цифрового идентификатора ПО	*	MD5	MD5

^{*-}Данные недоступны, так как встроенное ПО не может быть модифицировано, переустановлено или прочитано через какой-либо интерфейс после первичной загрузки изготовителем

- 6.4.4 Результаты проверки считаются положительными, если идентификационные для встроенного и внешнего ПО соответствуют указанным в Таблице 4.
 - 6.5 Проверка порога чувствительности (стартового тока)
- 6.5.1 Проверку порога чувствительности проводить на поверочной установке при номинальном напряжении 220 В, коэффициенте мощности равном единице и токе запуска, равном 0,02 А для счётчиков класса точности 1 по активной энергии.

Результаты проверки считают положительными, если при заданном стартовом токе после подачи нагрузки индикатор функционирования включается и счётчик продолжает регистрировать показания.

На испытательном выходе счётчика с помощью частотомера или на индикаторе функционирования регистрируются импульсы. Время наблюдения определяется формулой (2):

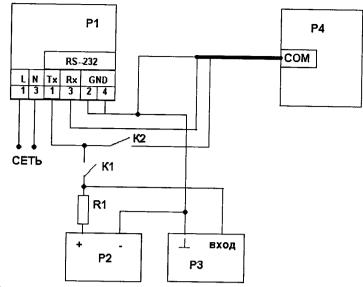
$$T = 120000 / A \times W$$
 (минут) (2)

где А- постоянная счётчика, равная, в зависимости от исполнения, 3200 имп. / кВт·ч или 6400 имп. / кВт·ч (что указано в паспорте счётчика);

- W величина активной нагрузки при заданном стартовом токе, Вт.
- 6.5.2 Счётчик считают выдержавшим проверку при заданном стартовом токе, если за время испытания регистрируется хотя бы один импульс с поверочного выхода или светового индикатора.
 - 6.6 Проверка отсутствия самохода
- 6.6.1 При проверке на поверочной установке отсутствия самохода к цепи напряжения счётчика приложить напряжение 253 В. При этом ток в токовой цепи должен отсутствовать.

С помощью поверочной установки «DJ-101» на испытательном выходе счётчика регистрируются импульсы. Время наблюдения отсутствия самохода Т, определяется по следующим формулам:

$$T = \frac{600 \cdot 10^6}{k \cdot m \cdot U_{\text{HOM}} \cdot I_{\text{Makc}}}, \text{ мин - при измерении активной энергии.}$$
 (3)


где k- постоянная счётчика, указана в паспорте счётчика;

- т число измерительных элементов, равное 1.
- 6.6.2 Счётчик считают выдержавшим проверку, если за время испытания регистрируется не более одного импульса.
- 6.7 Определение основной относительной погрешности счётчиков при измерении электроэнергии (групповая поверка) проводить на установке для поверки счётчиков «DJ-101», в состав которой входят специальные разделительные трансформаторы, изолирующие влияние шунтовых счётчиков друг на друга.
- 6.7.1 Измерения проводить при номинальном напряжении 220 В. Значения тока и коэффициента мощности в контролируемых точках рабочего диапазона задавать по таблице 5.
- 6.7.2 Значение основной относительной погрешности поверяемого счётчика определять по показаниям вычислителя погрешности поверочной установки.
- 6.7.3 Результаты поверки считаются положительными, если полученные значения основной относительной погрешности счётчика при всех режимах испытаний не превышают пределов допускаемой основной относительной погрешности, приведенных в таблице 5.

Таблица 5

таолица 5.				
Номер	Напряжение,	Ток,	00500	Пределы допускаемой
испытания	В	Α	cosφ	относительной погрешности, %
1	220	$0,051_{6}$	1	± 1,5
2	220	$0,11_{6}$	1	± 1,0
3	220	$0,11_{6}$	0,5 инд.	± 1,5
4	220	$0,11_{6}$	0,8 емк.	± 1,5
5	220	0,216	0,5 инд.	± 1,0
6	220	0,216	0,8 емк.	± 1,0
7	220	16	1	± 1,0
8	220	16	0,5 инд.	± 1,0
9	220	I_6	0,8 емк.	± 1,0
10	220	1 _{макс}	1	± 1,0
11	220	1 _{макс}	0,5 инд.	± 1,0
12	220	1 _{макс}	0,8 емк.	± 1,0

- 6.8 Проверка погрешности хода встроенных часов и переключения тарифных зон Определение погрешности переключения тарифных зон проводить методом определения точности среднесуточного хода часов ΔТ следующим образом:
 - а) собрать схему в соответствии с рисунком 1;
- б) подключить счетчик к сети, в персональном компьютере запустить программу для ЭВМ «SetCounter», выбрать соответствующий номер порта компьютера и ввести заводской номер счетчика, нажать на кнопку «Подключить счётчик». Перейти на вкладку «Калибровка». В окне «Калибровка часов» нажать на кнопку «Считать», записать калибровочное число со знаком отображаемое в окне экранной формы компьютера;
- в) ввести с компьютера режим вывода контрольной частоты F_0 часов-календаря, для этого нажать кнопку «Запуск» (на счетчике загорится постоянным свечение светодиода);
- г) установить множитель периодов частотомера равный 10^4 при периоде меток времени 1 мкс, разомкнуть ключ K2, замкнуть ключ K1 и измерить период T_0 следования импульсов контрольной частоты F_0 часов-календаря; измерение провести три раза и усреднить результат с дискретностью 0,001 мкс;

РІ – счетчик Гранит-2 (2М);

Р2 –блок питания 5 В;

Р3 -частотомер;

P4 – IBM совместимый компьютер

Рисунок 3 - Схема для проверки погрешности хода часов.

д) определить значение частоты F_0 по выражению

$$F_0 = 10^6 / T_{0cp}$$
 (1)

е) если калибровочное число имеет знак «плюс», то ΔT вычисляется по следующей формуле

$$\Delta T = 86400 \cdot (1-512 / (F_0 + N / 960)), c / сутки,$$
 (2)

где N – калибровочное число;

если калибровочное число имеет знак «минус», то ΔT вычисляется по следующей формуле

$$\Delta T = 86400 \cdot (512 / (F_0 + N / 960) - 1), c / cytku,$$
 (3)

Результаты поверки считать положительными, если вычисленное значение ΔT не более ± 0.5 с / сутки.

7 Оформление результатов поверки

- 7.1 Результаты поверки внести в протокол, рекомендуемая форма которого приведена в ГОСТ 8.584-2004.
- 7.2 Положительные результаты первичной поверки оформить записью в паспорте (раздел «Свидетельство о поверке») с нанесением знака поверки; кроме того, нанести знак поверки на счётчик в месте, указанном на рисунках П1 и П2.
- 7.3 При отрицательных результатах поверки счётчик к применению не допускают и оформляют извещение о непригодности к применению с указанием причин в соответствии с установленным порядком.

Приложение 1

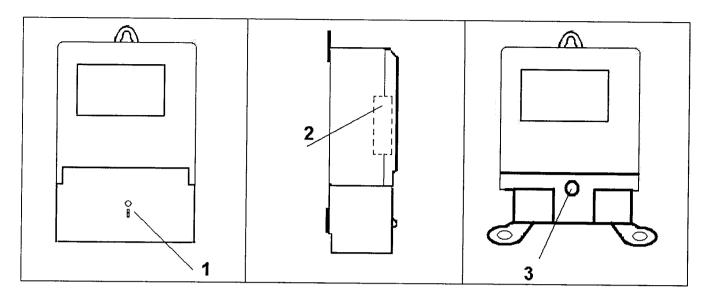


Рисунок П1 - Места пломбировки счётчиков ГРАНИТ-1, ГРАНИТ-1Э, ГРАНИТ-2.

- 1 Место установки пломбы энергоснабжающей организации;
- 2 Место установки пломбы предприятия-изготовителя;
- 3 Место для нанесения знака поверки.

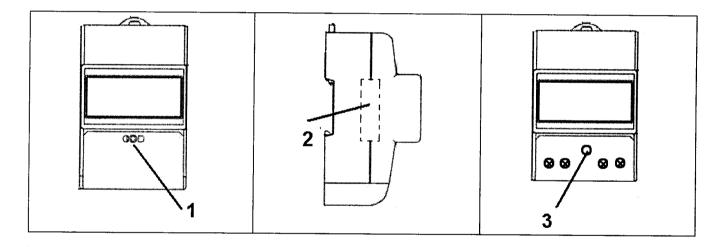


Рисунок П2 - Места пломбировки счётчика ГРАНИТ-1М, ГРАНИТ-1МЭ, ГРАНИТ-2М.

- 1 Место установки пломбы энергоснабжающей организации;
- 2 Место установки пломбы предприятия-изготовителя;
- 3 Место для нанесения знака поверки.