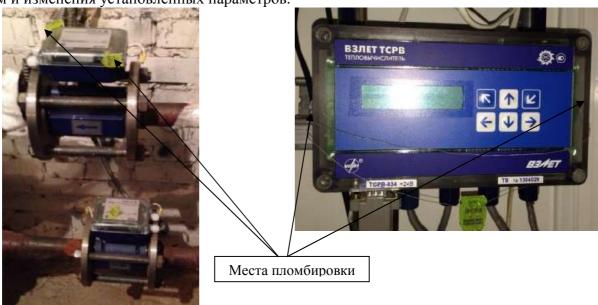
ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система измерительная количества теплоносителя и тепловой энергии цеха №07 НПЗ ОАО «ТАИФ-НК»

Назначение средства измерений

Система измерительная количества теплоносителя и тепловой энергии цеха №07 НПЗ ОАО «ТАИФ-НК» (далее - ИС) предназначена для измерения объемного расхода (объема), температуры, разности температур теплоносителя в подающем и обратном трубопроводах и вычисления количества тепловой энергии.

Описание средства измерений


Принцип действия ИС основан на измерении тепловычислителем электрических сигналов, поступающих от преобразователей расхода, температуры, последующем определении на их основе количества тепловой энергии в соответствии с заданными алгоритмами и передаче измерительной информации на верхний уровень.

ИС состоит из тепловычислителя «ВЗЛЕТ ТСРВ» исполнение 034 (Госреестр №27010-13), двух расходомеров-счетчиков электромагнитных «ВЗЛЕТ ЭР» модификации «Лайт М» исполнение ЭРСВ-440 ЛВ (Госреестр №52856-13), комплекта термопреобразователей сопротивления «ВЗЛЕТ ТПС» (Госреестр №21278-11) и сервера базы данных.

В состав ИС входят две измерительные линии (далее - ИЛ): прямая и обратная.

ИС обеспечивает выполнение следующих основных функций:

- измерение объемного расхода, температуры и разности температур на ИЛ;
- вычисление массового расхода (массы) теплоносителя и количества тепловой энергии;
- регистрацию, индикацию, хранение и передачу на верхний уровень результатов измерений;
 - формирование, отображение и печать текущих отчетов;
- защита системной информации от несанкционированного доступа к программным средствам и изменения установленных параметров.

расходомеры-счетчики электромагнитные «ВЗЛЕТ ЭР»

Тепловычислитель «ВЗЛЕТ ТСРВ»

Рисунок 1 - Общий вид и схема пломбировки

Программное обеспечение

Программное обеспечение (далее - ПО) ИС является встроенным ПО тепловычислителя «ВЗЛЕТ ТСРВ» и обеспечивает реализацию функций ИС. После включения питания ПО проводит ряд самодиагностических проверок, во время работы осуществляет сбор и обработку поступающих данных, а также циклическую проверку целостности конфигурационных данных.

Защита ПО ИС от непреднамеренных и преднамеренных изменений и обеспечение его соответствия утвержденному типу, осуществляется путем идентификации, защиты от несанкционированного доступа.

Идентификационные данные ПО ИС приведены в таблице 1.

Таблица 1 - Идентификационные данные ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	ВЗЛЕТ ТСРВ
Номер версии (идентификационный номер) ПО	61.01.03.54
Цифровой идентификатор ПО	0×DE02
Алгоритм вычисления цифрового идентификатора ПО	CRC16

ПО ИС защищено от несанкционированного доступа, изменения алгоритмов и установленных параметров с помощью специальных средств защиты. ПО ИС имеет высокий уровень защиты по Р 50.2.077-2014.

Метрологические и технические характеристики

Таблица 2 - Метрологические и технические характеристики

Наименование	Значение	
Измеряемая среда (теплоноситель)	вода	
Диапазон измерения среднего объемного расхода		
теплоносителя, м ³ /ч	$0{,}004{\cdot}Q_{{ ext{ m Hau}}6}$ до $Q_{{ ext{ m Hau}}6}$	
Наибольший измеряемый средний объемный расход		
$(Q_{\text{наиб}}), M^3/\Psi$	28,98	
Диапазон измерения температуры теплоносителя, °С	от 0 до +180	
Диапазон измерения разности температур теплоносителя,		
°C	от 3 до 180	
Пределы допускаемой относительной погрешности при		
измерении объемного расхода (объема), %	±2	
Пределы допускаемой абсолютной погрешности при		
измерении температуры, °С	$\pm (0.6+0.004 \cdot t)$	
Пределы допускаемой относительной погрешности при		
измерении разности температур, %	$\pm (0,5+9/\Delta t)$	
Пределы допускаемой относительной погрешности при		
вычислении тепловой энергии, %	$\pm (0.5+3/\Delta t)$	
Пределы допускаемой относительной погрешности при		
измерении тепловой энергии, %	$\pm (3+12/\Delta t)$	
Температура окружающей среды, °С	от 5 до 50	
Относительная влажность воздуха при 35°C, %	до 80 без конденсации влаги	
Габаритные размеры тепловычислителя «ВЗЛЕТ		
ТСРВ», мм, не более	250×250×105	
Масса тепловычислителя «ВЗЛЕТ ТСРВ», кг, не более	3	
Потребляемая мощность, Вт, не более	50	

Продолжение таблицы 2

Наименование	Значение
Напряжение питания постоянного тока, В	24
Среднее время наработки на отказ, ч	25000
Средний срок службы, лет, не менее	12
Примечания	
t - измеренное значение температуры, °С	
Δt - разность температур в прямой и обратной ИЛ, °C	

Знак утверждения типа

наносится на титульный лист паспорта типографским способом.

Комплектность средства измерений

Комплектность ИС представлена в таблице 3.

Таблица 3 - Комплектность

Наименование	Количество
Система измерительная количества теплоносителя и тепловой энергии цеха №07 НПЗ ОАО «ТАИФ-НК», заводской №6	1 экз.
Система измерительная количества теплоносителя и тепловой энергии цеха №07 НПЗ ОАО «ТАИФ-НК». Паспорт	1 экз.
МП 1112/2-311229-2015 ГСИ. Система измерительная количества теплоносителя и тепловой энергии цеха №07 НПЗ ОАО «ТАИФ-НК». Методика поверки	1 экз.

Поверка

осуществляется по документу МП 1112/2-311229-2015 «ГСИ. Система измерительная количества теплоносителя и тепловой энергии цеха №07 НПЗ ОАО «ТАИФ-НК». Методика поверки», утвержденному ООО Центр метрологии «СТП» 11 декабря 2015 г.

Основное средство поверки:

- калибратор многофункциональный MC5-R-IS, диапазон воспроизведения сопротивления от 1 до 4000 Ом, пределы допускаемой основной погрешности $\pm 0.04\%$ показаний, но не менее ± 30 мОм; диапазон воспроизведения последовательности импульсов от 0 до 999999 имп., диапазон воспроизведения силы постоянного тока от 0 до 25 мА, пределы допускаемой основной погрешности воспроизведения $\pm (0.02\%$ показания ± 1 мкА).

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

Методика измерений приведена в документах: «Тепловычислитель ВЗЛЕТ-ТСРВ исполнение-034. Руководство по эксплуатации. Часть І. В84.00-00.00-34 РЭ», Приказ Минстроя России от 17.03.2014 г. №99/пр «Об утверждении Методики осуществления коммерческого учета тепловой энергии, теплоносителя».

Нормативные и технические документы, устанавливающие требования к системе измерительной количества теплоносителя и тепловой энергии цеха №07 НПЗ ОАО «ТАИФ-НК»

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Приказ Минстроя России от 17.03.2014 г. №99/пр «Об утверждении Методики осуществления коммерческого учета тепловой энергии, теплоносителя»

Техническая документация НПЗ ОАО «ТАИФ-НК», ОАО «ВЗЛЕТ»

Изготовитель

НПЗ ОАО «ТАИФ-НК» ИНН 1651025328 423570, г. Нижнекамск, ОПС-11, а/я 20 Тел.(8555) 38-14-14, факс (8555) 38-14-41

Испытательный центр

ООО Центр Метрологии «СТП»

420107, Российская Федерация, Республика Татарстан, г. Казань, ул. Петербургская, д. 50, корп. 5

Телефон: (843) 214-20-98; Факс: (843) 227-40-10 E-mail: <u>office@ooostp.ru</u>; <u>http://www.ooostp.ru</u>

Аттестат аккредитации ООО Центр Метрологии «СТП» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311229 от 30.07.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. « ___ » _____ 2016 г.