УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «26» августа 2021 г. № 1848

 Лист № 1

 Регистрационный № 82745-21
 Всего листов 7

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «ЭСКФ» для энергоснабжения АО «Бежецкий Завод «АСО» и ООО «Эл Пром-Ком»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «ЭСКФ» для энергоснабжения АО «Бежецкий Завод «АСО» и ООО «Эл Пром-Ком» (далее — АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, автоматизированного сбора, обработки, хранения, формирования отчетных документов и передачи полученной информации заинтересованным организациям в рамках согласованного регламента.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную двухуровневую автоматизированную систему с централизованным управлением и распределенной функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень — измерительно-информационные комплексы (ИИК), включающие в себя измерительные трансформаторы тока (ТТ), измерительные трансформаторы напряжения (ТН) и счетчики активной и реактивной электрической энергии (счетчики), вторичные измерительные цепи и технические средства приема-передачи данных.

2-й уровень – информационно-вычислительный комплекс (ИВК), включающий в себя сервер с программным обеспечением (ПО) АКУ «Энергосистема», устройство синхронизации времени (УСВ), автоматизированные рабочие места (АРМ), каналообразующую аппаратуру, технические средства для организации локальной вычислительной сети и разграничения прав доступа к информации.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков при помощи технических средств приема-передачи данных поступает на сервер, где осуществляется обработка измерительной информации, в частности вычисление электрической энергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление отчетных документов.

От сервера информация в виде xml-файлов установленного формата поступает на APM по каналу связи сети Internet.

Передача информации от APM в программно-аппаратный комплекс AO «ATC» с электронной цифровой подписью субъекта оптового рынка электроэнергии (OPЭ), в филиал AO «CO EЭС» и в другие смежные субъекты OPЭ осуществляется по каналу связи с протоколом TCP/IP сети Internet в виде xml-файлов установленного формата в соответствии с приложением 11.1.1 «Формат и регламент предоставления результатов измерений, состояний средств и объектов измерений в AO «ATC», AO «CO EЭС» и смежным субъектам» к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мощности.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая включает в себя часы счетчиков, часы сервера и УСВ. УСВ обеспечивает передачу шкалы времени, синхронизированной по сигналам глобальных навигационных спутниковых систем с национальной шкалой координированного времени РФ UTC(SU).

Сравнение показаний часов сервера с УСВ осуществляется не реже 1 раза в час. Корректировка часов сервера производится при обнаружении расхождения.

Сравнение показаний часов счетчиков с часами сервера осуществляется не реже 1 раза в сутки. Корректировка часов счетчиков производится при расхождении показаний часов счетчиков с часами сервера более ± 2 с.

Журналы событий счетчиков и сервера отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство.

Нанесение знака поверки на средство измерений не предусмотрено.

Программное обеспечение

В АИИС КУЭ используется программное обеспечение (ПО) АКУ «Энергосистема». ПО АКУ «Энергосистема» обеспечивает защиту измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО АКУ «Энергосистема». Метрологически значимая часть ПО АКУ «Энергосистема» указана в таблице 1. Уровень защиты ПО АКУ «Энергосистема» от непреднамеренных и преднамеренных изменений – «средний» в соответствии с Р 50.2.077-2014.

Таблица 1 – Идентификационные данные ПО АКУ «Энергосистема»

Идентификационные данные (признаки)	Значение		
Идентификационное наименование ПО	ESS.Metrology.dll		
Номер версии (идентификационный номер) ПО	не ниже 1.0		
Цифровой идентификатор ПО	0227AA941A53447E06A5D1133239DA60		
Алгоритм вычисления цифрового	MD5		
идентификатора ПО			

Метрологические и технические характеристики

Таблица 2 — Состав измерительных каналов (ИК) АИИС КУЭ и их метрологические характеристики

Таоли	ца 2 — Состав измеј	рительных канало	B (IIII) IMIII C R5	о и их метрологич	сские хара	актеристики		I			
		Измерительные компоненты						кие характери- и ИК			
Номер ИК	Наименование точки измерений 2 ПС 110 кВ Шол-мино, КРУ-10 кВ, 1	ТТ 3 ТПЛ-10с Кл.т. 0,5	ТН 4 НАМИ-10-95 УХЛ2 Кл.т. 0,5	Счетчик 5 Меркурий 234 ARTM-00 PBR.G	УСВ	Сервер	Вид элек- тро- энергии 8 Актив- ная	Границы до- пускаемой ос- новной отно-	Границы до- пускаемой от- носительной погрешности в рабочих усло- виях (±δ), % 10		
1	мино, кт у-то кВ, т СШ 10 кВ, Яч. 11, КЛ-10 кВ №11	200/5 Рег. № 29390-10 Фазы: А; С	10000/100 Рег. № 20186-00 Фаза: ABC	Кл.т. 0,5Ѕ/1,0			Реак- тивная	2,5	5,9		
2	ПС 110 кВ Шол- мино, КРУ-10 кВ, 2 СШ 10 кВ, Яч. 18, КЛ-10 кВ №18	ТПЛ-10с Кл.т. 0,5 300/5 Рег. № 29390-10 Фазы: А; С	НАМИ-10-95 УХЛ2 Кл.т. 0,5 10000/100 Per. № 20186-00 Фаза: ABC		Рег. №	Supermicro X9SCL/X9 SCM	Актив- ная Реак- тивная	1,3 2,5	3,4 5,9		
3	ПС 35 кВ КИН, ОРУ-35 кВ, ввод 35 кВ Т-1	ТФ3М-35А-У1 Кл.т. 0,5 400/5 Рег. № 3690-73 Фазы: A; B; C	3HOM-35-65 Кл.т. 0,5 35000/√3/100/√3 Рег. № 912-70 Фазы: A; B; C	Меркурий 234 ARTM2-00 PBR.R Кл.т. 0,5S/1,0 Per. № 75755-19	37328-15	3/328-13	3/328-13	SCM	Актив- ная Реак- тивная	1,3 2,5	3,4 5,9
4	ПС 35 кВ КИН, ОРУ-35 кВ, ввод 35 кВ Т-2	ТФ3М-35А-У1 Кл.т. 0,5 400/5 Рег. № 3690-73 Фазы: A; B; C	НАМИ-35 УХЛ1 Кл.т. 0,5 35000/100 Рег. № 19813-05 Фаза: ABC	Меркурий 234 ARTM2-00 PBR.R Кл.т. 0,5S/1,0 Рег. № 75755-19			Актив- ная Реак- тивная	1,3 2,5	3,4 5,9		

Продолжение таблицы 2

	1								
1	2	3	4	5	6	7	8	9	10
5	ТП 10 кВ, РУ-0,4 кВ, СШ 0,4 кВ, ЛЭП-0,4 кВ в сто- рону РУ-0,4 кВ ООО «Эл Пром- Ком»	Т-0,66 Кл.т. 0,5 800/5 Рег. № 52667-13 Фазы: А; В; С		Меркурий 234 ARTM-03 PBR.R Кл.т. 0,5S/1,0 Per. № 75755-19	Эпкс-2 Рег. №		Актив- ная Реак- тивная	1,0 2,1	3,3 5,8
Пределы допускаемой абсолютной погрешности часов компонентов АИИС КУЭ в рабочих условиях относительно шкаль						±5 c			
времени UTC(SU)								<u> </u>	

Примечания:

- 1 В качестве характеристик погрешности ИК установлены границы допускаемой относительной погрешности ИК при доверительной вероятности, равной 0,95.
- 2 Характеристики погрешности ИК указаны для измерений активной и реактивной электроэнергии на интервале времени 30 мин.
 - 3 Погрешность в рабочих условиях указана для тока 5 % от $I_{\text{ном}}$; $\cos \varphi = 0.8$ инд.
- 4 Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик. Допускается замена УСВ на аналогичное утвержденного типа, а также замена сервера без изменения используемого ПО (при условии сохранения цифрового идентификатора ПО). Замена оформляется актом в установленном собственником АИИС КУЭ порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Таблица 3 – Основные технические характеристики ИК

Наименование характеристики	Значение
Количество ИК	5
Нормальные условия:	
параметры сети:	
напряжение, % от Uном	от 95 до 105
ток, % от Іном	от 5 до 120
коэффициент мощности соѕф	0,9
частота, Гц	от 49,8 до 50,2
температура окружающей среды, °С	от +15 до +25
Условия эксплуатации:	
параметры сети:	
напряжение, % от Uном	от 90 до 110
ток, % от Іном	от 5 до 120
коэффициент мощности соѕф	от 0,5 до 1,0
частота, Гц	от 49,6 до 50,4
температура окружающей среды в месте расположения ТТ и ТН, °С	от -45 до +40
температура окружающей среды в месте расположения счетчиков, °С	от -10 до +35
температура окружающей среды в месте расположения сервера, °C	от +15 до +25
Надежность применяемых в АИИС КУЭ компонентов:	
для счетчиков:	
среднее время наработки на отказ, ч, не менее	320000
среднее время восстановления работоспособности, ч	2
для УСВ:	
среднее время наработки на отказ, ч, не менее	35000
среднее время восстановления работоспособности, ч	2
для сервера:	
среднее время наработки на отказ, ч, не менее	100000
среднее время восстановления работоспособности, ч	1
Глубина хранения информации:	
для счетчиков:	
тридцатиминутный профиль нагрузки в двух направлениях, сут, не	
менее	170
при отключении питания, лет, не менее	10
для сервера:	
хранение результатов измерений и информации состояний средств	
измерений, лет, не менее	3,5

Надежность системных решений:

защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;

резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии по электронной почте.

В журналах событий фиксируются факты:

- журнал счетчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике.
- журнал сервера:
 - параметрирования;
 - пропадания напряжения;

коррекции времени в счетчике и сервере;

пропадание и восстановление связи со счетчиком.

Защищенность применяемых компонентов:

– механическая защита от несанкционированного доступа и пломбирование:

счетчика электрической энергии;

промежуточных клеммников вторичных цепей напряжения;

испытательной коробки;

сервера.

– защита на программном уровне информации при хранении, передаче, параметрировании:

счетчика электрической энергии;

сервера.

Возможность коррекции времени в:

счетчике электрической энергии (функция автоматизирована);

сервере (функция автоматизирована).

Возможность сбора информации:

о состоянии средств измерений;

о результатах измерений (функция автоматизирована).

Шикличность:

измерений 30 мин (функция автоматизирована);

сбора не реже одного раза в сутки (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 — Комплектность АИИС КУЭ

Таолица 4 — Комплектность Ангис КУЭ		•
Наименование	Обозначение	Количество, шт./экз.
		ш1./ ЭКЗ.
Трансформаторы тока	ТПЛ-10с	4
Трансформаторы тока	ТФЗМ-35А-У1	6
Трансформаторы тока	T-0,66	3
Трансформаторы напряжения	НАМИ-10-95 УХЛ2	2
Трансформаторы напряжения	3HOM-35-65	3
Трансформаторы напряжения	НАМИ-35 УХЛ1	1
Счетчики электрической энергии статические	Меркурий 234	5
Блок коррекции времени	ЭНКС-2	1
Сервер	Supermicro X9SCL/X9SCM	1
Методика поверки	МП ЭПР-361-2021	1
Паспорт-формуляр	ЭНСТ.411711.259.ФО	1

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии с использованием АИИС КУЭ ООО «ЭСКФ» для энергоснабжения АО «Бежецкий Завод «АСО» и ООО «Эл Пром-Ком», аттестованном ООО «ЭнергоПромРесурс», аттестат аккредитации № RA.RU.312078 от 07.02.2017 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «ЭСКФ» для энергоснабжения АО «Бежецкий Завод «АСО» и ООО «Эл Пром-Ком»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «Энергосистемы» (ООО «Энергосистемы»)

ИНН 3328498209

Адрес: 600028, г. Владимир, ул. Сурикова, д. 10 «А», помещение 10

Телефон (факс): (4922) 60-23-22

Web-сайт: ensys.su E-mail: post@ensys.su

Испытательный центр


Общество с ограниченной ответственностью «ЭнергоПромРесурс» (ООО «ЭнергоПромРесурс»)

Адрес: 143443, Московская обл., г. Красногорск, мкр. Опалиха, ул. Ново-Никольская, д. 57, офис 19

Телефон: (495) 380-37-61

E-mail: energopromresurs2016@gmail.com

Аттестат аккредитации ООО «ЭнергоПромРесурс» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.312047 от 26.01.2017 г.

