ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Анализаторы цепей векторные серий MS46122A, MS46322A

Назначение средства измерений

Анализаторы цепей векторные серий MS46122A, MS46322A (далее анализаторы) предназначены для измерения комплексных коэффициентов отражения и передачи в коаксиальных трактах.

Описание средства измерений

Принцип действия основан на сравнении амплитуды и фазы сигнала, подаваемого на вход исследуемого устройства, с амплитудой и фазой сигнала, отраженного от входа устройства либо поступающего с его выхода. Тестовый сигнал формируется от высокостабильного генератора на фиксированной частоте, или в выбранной полосе частот с непрерывной либо однократной разверткой. Представление измеряемых комплексных параметров S_{11} , S_{22} , S_{21} , S_{22} производится в полярных координатах (модуль и фаза) или в декартовых координатах (действительная и мнимая части). Анализаторы позволяют отображать полное сопротивление на диаграмме Смита и групповое время задержки.

В анализаторах серии MS46122A управление режимами работы и отображение измерительной информации производится с помощью внешнего компьютера. Питание осуществляется постоянным напряжением 12 В, в комплект поставки входит сетевой адаптер.

Анализаторы серии MS46322A имеют встроенный компьютер (для визуального отображения измерительной информации требуется внешний монитор), они имеют возможность подключения периферийных устройств и дистанционного управления через порты USB и Ethernet. Питание осуществляется от сети переменного тока.

Анализаторы имеют настольное исполнение и выполнены в ударопрочном корпусе. Вид передней и задней панели анализаторов показан на рисунках 1-4.

место нанесения знака утверждения типа и знака поверки Рисунок 1 – Вид передней панели анализаторов серии MS46122A

место пломбирования (краска под винт)

Рисунок 2 – Вид задней панели анализаторов серии MS46122A

Рисунок 3 – Вид передней панели анализаторов серии MS46322A

На рисунке 5 показан анализатор серии MS46122A с внешним компьютером, на рисунке 6 – анализатор серии MS46322A с внешним монитором.

Серия MS46122A представлена тремя моделями MS46122A-010, MS46122A-020, MS46122A-040, серия MS46322A - шестью моделями MS46322A-004, MS46322A-010, MS46322A-014, MS46322A-020, MS46322A-030, MS46322A-040. Модели в сериях отличаются верхней частотой рабочего диапазона частот.

Программное обеспечение

по структуре является целостным, оно выполняет функции управления режимами работы, математической обработки и представления измерительной информации, а также взаимодействия с подключаемыми по интерфейсам внешними устройствами.

В анализаторах серии MS46122A поставляемое на USB флэш-накопителе программное обеспечение устанавливается пользователем на внешний компьютер, в анализаторах серии MS46322A программное обеспечение предустановлено изготовителем на внутреннем компьютере.

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений «низкий» по Р 50.2.077-2014, класс риска "A" по WELMEC 7.2 Issue 5.

Идентификационные данные программного обеспечения приведены в таблице 1.

Таблица 1 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	ShockLine
Номер версии (идентификационный номер) ПО	1.1.04 и выше
Цифровой идентификатор ПО	-

Метрологические и технические характеристики

Диапазон частот

MS46322A-004: от 1 МГц до 4 ГГц

MS46122A-010, MS46322A-010: от 1 МГц до 8 ГГц

MS46322A-014: от 1 МГц до 14 ГГц

MS46122A-020, MS46322A-020: от 1 МГц до 20 ГГц

MS46322A-030: от 1 МГц до 30 ГГц

MS46122A-040, MS46322A-040: от 1 МГц до 43,5 ГГц

Тип коаксиальных соединителей измерительных портов

MS46322A-004, MS46122A-010, MS46322A-010: N-тип, розетка

прочие модели: К-тип (2,92 мм), вилка

Разрешение по частоте: 1 Гц

Пределы основной допускаемой относительной погрешности частоты опорного генератора при выпуске из производства или после заводской подстройки при температуре (23 ± 5) °C: $\pm 1 \cdot 10^{-6}$

Пределы допускаемого относительного годового дрейфа частоты опорного генератора: $\pm 1\cdot 10^{-6}$

Пределы дополнительной относительной погрешности частоты опорного генератора в рабочем диапазоне температур: $\pm 1 \cdot 10^{-6}$

Полоса пропускания фильтра промежуточной частоты: от 10 Гц до 300 кГц

Номинальное значение мощности сигнала генератора

высокий ("High"): минус 3 дБм низкий ("Low"): минус 20 дБм

 Π р и м е ч а н и е - 3десь и далее «дБм» обозначает уровень мощности в дБ относительно 1 мВт.

Динамический диапазон измерения коэффициента передачи, не менее

на частотах от 1 до 10 МГц: 65 дБ

на частотах свыше 10 до 20 МГц: 85 дБ

на частотах свыше 20 МГц до 8 ГГц: 100 дБ

на частотах свыше 8 до 14 ГГц: 95 дБ

на частотах свыше 14 до 43,5 ГГц: 100 дБ

 Π р и м е ч а н и е — Динамический диапазон определяется как разность между уровнем мощности генератора и уровнем собственных шумов приемника. Указанные значения — для полосы фильтра Π Ч 10 Γ ц, уровня мощности генератора "High", количества усреднений не менее 10.

Среднеквадратическое значение шумов измерительной трассы для модуля коэффициента отражения и передачи, не более

на частотах от 1 до 20 МГц: 0,03 дБ

на частотах свыше 20 МГц до 43,5 ГГц: 0,006 дБ

Среднеквадратическое значение шумов измерительной трассы для фазы коэффициента отражения и передачи, не более

на частотах от 1 до 20 МГц: 0.2°

на частотах свыше 20 МГц до 20 ГГц: 0.1°

на частотах свыше 20 до 43,5 ГГц: $0,15^{\circ}$

П р и м е ч а н и е – Указанные выше значения шумов даны для полосы фильтра ПЧ 10 Гц и уровня мощности генератора "High".

Пределы допускаемой абсолютной погрешности измерений модуля коэффициента отражения Γ

для моделей с соединителем N-типа

на частотах от 1 МГц до 6 ГГц: $\pm (0.008 + 0.01 \text{ Å}^2 + 0.025 \text{ Å}^2)$

на частотах свыше 6 до 9 ГГц: $\pm (0.014 + 0.01 \text{ Å} + 0.025 \text{ Å}^2)$

на частотах свыше 9 до 18 ГГц: $\pm (0.025 + 0.01 \text{ ж} + 0.05 \text{ ж}^2)$

для моделей с соединителем К-типа

на частотах от 1 МГц до 10 ГГц: $\pm (0.008 + 0.01 \text{ X}^2 + 0.025 \text{ X}^2)$

на частотах свыше 10 до 20 ГГц: $\pm (0.016 + 0.005 \text{ у } + 0.05 \text{ y }^2)$

на частотах свыше 20 до 30 ГГц: $\pm (0.025 + 0.005 \times \Gamma + 0.08 \times \Gamma^2)$

на частотах свыше 30 до 40 ГГц: $\pm (0.032 + 0.005 \text{ X} + 0.1 \text{ X}^2)$

Пределы допускаемой абсолютной погрешности измерений фазы коэффициента отражения:

 $\pm [(180/p) \times \arcsin(D\Gamma/\Gamma)]^{\circ}$,

где DГ — абсолютная погрешность измерений модуля коэффициента отражения Γ Пределы допускаемой погрешности измерений модуля и фазы коэффициента передачи представлены в таблице 2.

Таблица 2 – Погрешность измерений модуля и фазы коэффициента передачи

Пределы допускаемой относительной погрешности измерений модуля коэффициента передачи, дБ						
	значение модуля коэффициента передачи, дБ					
	\leq 0; \geq - 15	$<-15; \ge -50$	$< -50; \ge -70$			
для моделей с соединителем N-типа						
на частотах от 1 МГц до 8 ГГц	± 0,10	± 0,15	± 0,30			
на частотах свыше 8 до 14 ГГц	± 0,12	± 0,20	$\pm 0,\!50$			
на частотах свыше 14 до 18 ГГц	± 0,12	± 0,17	± 0,32			
для моделей с соединителем К-типа						
на частотах от 1 МГц до 8 ГГц	± 0,10	± 0,15	± 0,30			
на частотах свыше 8 до 14 ГГц	± 0,12	± 0,20	$\pm 0,\!50$			
на частотах свыше 14 до 20 ГГц	± 0,12	± 0,17	± 0,32			
на частотах свыше 20 до 40 ГГц	± 0,13	± 0,18	± 0,33			
Пределы допускаемой абсолютной погрешности						
измерений фазы коэффициента передачи, °						
значение модуля коэффициента передачи, дБ						
	$\leq 0; \geq -15$	< − 15; ≥ − 50	$< -50; \ge -70$			
для моделей с соединителем N-типа						
на частотах от 1 МГц до 8 ГГц	± 1,0	± 1,4	± 2,0			
на частотах свыше 8 до 14 ГГц	± 1,2	± 1,6	± 2,8			
на частотах свыше 14 до 18 ГГц	± 1,4	± 1,5	± 2,2			
для моделей с соединителем К-типа						
на частотах от 1 МГц до 8 ГГц	± 1,0	± 1,4	± 2,0			
на частотах свыше 8 до 14 ГГц	± 1,2	± 1,6	± 2,8			
на частотах свыше 14 до 40 ГГц	± 1,6	± 1,8	± 2,5			

 Π р и м е ч а н и е — Указанные выше значения погрешности даны для температуры окружающей среды в пределах \pm 1 $^{\circ}$ C от температуры, при которой производилась полная двухпортовая калибровка. Полоса фильтра Π Ч 10 Γ ц, уровень мощности генератора "High".

Габаритные размеры (ширина х глубина х высота), мм

модели серии MS46122A: 328 x 198 x 61 модели серии MS46322A: 484 x 590 x 108

Масса, не более, кг

модели серии MS46122A: 2,2 модели серии MS46322A: 11,0 Частота сети питания: от 47 до 63 Гц Напряжение сети питания: от 90 до 264 В Потребляемая мощность, не более, В·А модели серии MS46122A: 40 модели серии MS46322A: 350

Рабочие условия применения: группа 3 ГОСТ 22261-94 температура окружающей среды: от 0 до 50 °C

относительная влажность воздуха при температуре не более 40 °C

(без конденсата): от 5 до 95 %

Условия транспортирования и хранения

температура окружающей среды: от минус 40 до 75 °C

относительная влажность воздуха при температуре не более 65 °C

(без конденсата): от 0 до 90 %

Электромагнитная совместимость: по ГОСТ Р МЭК 61326-1-2014

Безопасность: по ГОСТ ІЕС 61010-1-2014

Знак утверждения типа

наносится на переднюю панель корпуса в виде наклейки и на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

Комплектность анализаторов приведена в таблице 3.

Таблица 3 – Комплектность

Наименование и обозначение	
Анализатор цепей векторный MS46122A-010/MS46122A-020/MS46122A-040/ MS46322A-004/MS46322A-010/MS46322A-020/MS46322A-030/MS46322A-040	
USB флеш-накопитель с документацией и программой ShockLine (для моделей серии MS46122A)	1
USB флеш-накопитель с программой для поверки "2300-560-R Performance Verification Software"	1 (по заказу)
Кабель сетевой (для моделей серии MS46322A)	
Адаптер для сети переменного тока 40-187-R (модели серии MS46122A)	
Кабель USB мини A/B 3-2000-1498 (для моделей серии MS46122A)	
Принадлежности (ВЧ кабели и адаптеры, калибровочные наборы)	по заказу
Руководство по эксплуатации	
10410-00340 для анализаторов серии MS46122A	1
10410-00335 для анализаторов серии MS46322A	
Методика поверки РТ-МП-3029-441-2016	

Поверка

осуществляется по документу РТ-МП-3029-441-2016 «ГСИ. Анализаторы цепей векторные серий MS46122A, MS46322A. Методика поверки», утвержденному ФБУ «Ростест-Москва» 19.02.2016 г.

Рекомендуемые средства поверки:

- стандарт частоты рубидиевый FS725, регистрационный номер 31222-06;
- частотомер универсальный FCA3003, регистрационный номер 51532-12;
- набор мер коэффициентов передачи и отражения Anritsu 3663-1, регистрационный номер 60436-15 (для анализаторов с соединителями N-типа);
- набор мер коэффициентов передачи и отражения Anritsu 3668-1, регистрационный номер 58910-14 (для анализаторов с соединителями K-типа).

Сведения о методиках (методах) измерений

Методы измерений изложены в разделе 4 документов 10410-00340 «Анализаторы цепей векторные MS46122A. Руководство по эксплуатации» и 10410-00335 «Анализаторы цепей векторные MS46322A. Руководство по эксплуатации».

Нормативные документы, устанавливающие требования к анализаторам цепей векторным серий MS46122A, MS46322A

- 1. ГОСТ Р 8.813-2013. ГСИ. Государственная поверочная схема для средств измерений волнового сопротивления, комплексных коэффициентов отражения и передачи в коаксиальных волноводах в диапазоне частот от 0.01 до 65 ГГц.
- 2. ГОСТ 8.129-2013. ГСИ. Государственная поверочная схема для средств измерений времени и частоты.
- 3. ГОСТ 22261-94. Средства измерений электрических и магнитных величин. Общие технические условия.
- 4. ГОСТ Р МЭК 61326-1-2014. Оборудование электрическое для измерения, управления и лабораторного применения. Требования электромагнитной совместимости. Часть 1. Общие требования.
- 5. ГОСТ IEC 61010-1-2014. Безопасность электрических контрольно-измерительных приборов и лабораторного оборудования. Часть 1. Общие требования.

Изготовитель

Фирма "Anritsu Company", США

Адрес: 490 Jarvis Drive, Morgan Hill, CA 95037, USA

Тел./факс 1-888-534-8453; E-mail: sales.esdc@anritsu.com

Заявитель

Закрытое акционерное общество «АКТИ-Мастер» (ЗАО «АКТИ-Мастер»)

Адрес: 127254, Москва, Огородный проезд, д. 5, стр. 5

Тел./факс (495)926-71-85; E-mail: post@actimaster.ru

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Москве» (ФБУ «Ростест-Москва»)

Адрес: 117418, г. Москва, Нахимовский пр., д. 31

Тел.: +7(499)544-00-00, +7(499)129-19-11; Факс: +7(499)129-99-96; E-mail: <u>info@rostest.ru</u> Аттестат аккредитации ФБУ «Ростест-Москва» по проведению испытаний средств измерений в целях утверждения типа RA RU.310639 от 16.04.2015 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

С.С. Голубев

М.п.	«	>>	2016	5]	Γ