ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Весы автомобильные электронные ВЕСТА

Назначение средства измерений

Весы автомобильные электронные ВЕСТА (далее – весы) предназначены для определения массы транспортных средств в статическом режиме.

Описание средства измерений

Весы имеют модульную конструкцию и состоят из грузоприемного устройства и электронного весоизмерительного устройства.

Грузоприемное устройство (далее — ГПУ) состоит из одной или нескольких секций. Каждая секция опирается на четыре аналоговых или цифровых весоизмерительных датчика (далее — датчик). При этом соседние секции имеют две общие точки опоры (датчика).

Сигнальные кабели датчиков в зависимости от исполнения весов подключены к электронному весоизмерительному устройству либо напрямую, либо через соединительную коробку.

Принцип действия весов основан на преобразовании деформации упругого элемента датчика, возникающей под действием взвешиваемого транспортного средства в аналоговый электрический сигнал, пропорциональный его массе. Далее этот сигнал преобразуется в цифровой код и обрабатывается. Измеренное значение массы выводится на дисплей электронного весоизмерительного устройства.

В весах используются электронные весоизмерительные устройства, которые представляют результаты взвешивания и имеют клавиши управления весами. При использовании в весах цифровых датчиков электронные весоизмерительные устройства представляют собой терминал (Т.2.2.5 ГОСТ OIML R 76-1–2011). При использовании в весах аналоговых датчиков электронные весоизмерительные устройства представляют собой индикатор (Т.2.2.2 ГОСТ OIML R 76-1–2011).

Индикаторы, используемые в составе весов:

- приборы весоизмерительные Микросим, модификации М0601, М0601-БМ-2 (Госреестр № 55918-13);
- приборы весоизмерительные СІ, модификации СІ-2400BS, СІ-5010A, СІ-6000A (Госреестр № 50968-12);
- весоизмерительные приборы VT300 (изготовитель фирма «Vishay Precision Group Celtron», Тайвань).

Аналоговые весоизмерительные датчики, используемые в составе весов совместно с любым из индикаторов:

- датчики весоизмерительные MB 150 (Госреестр № 44780-10);
- датчики весоизмерительные тензорезисторные M, модификации M70K, M100 (Госреестр № 53673-13);
 - датчики весоизмерительные сжатия 740 (Госреестр № 50842-12);
- датчики весоизмерительные тензорезисторные Single shear beam, Dual shear beam, S beam, Column, модификации НМ9В, ВМ14G (Госреестр № 55371-13);
- датчики весоизмерительные тензорезисторные C, модификация C16A (Госреестр № 60480-15).

Терминалы и цифровые весоизмерительные датчики, используемые в составе весов совместно:

- приборы весоизмерительные DIS2116 (изготовитель фирма «Hottinger Baldwin Messtechnik GmbH», Германия) и датчики весоизмерительные тензорезисторные С, модификация С16і (Госреестр № 60480-15);
- весоизмерительные приборы Matrix II (изготовитель фирма «UTILCELL», Испания) и датчики весоизмерительные сжатия 740D (Госреестр № 49772-12).
- приборы весоизмерительные DS3SS (изготовитель-фирма «Zhonghang Electronic Mtasuring Instruments Co.,LTD (ZEMIC),КНР» и датчики весоизмерительные тензорезисторные DHM9B10, DBM14G(Госреестр № 55634-13)
- приборы весоизмерительные DS3SS (изготовитель-фирма «Zhonghang Electronic Mtasuring Instruments Co.,LTD (ZEMIC),KHP» и датчики весоизмерительные тензорезисторные С, модификация С16і (Госреестр № 60480-15);

Общий вид ГПУ весов представлен на рисунке 1. Общий вид электронных весоизмерительных устройств представлен на рисунке 2.

Рисунок 1 — Общий вид ГПУ весов

Рисунок 2 — Общий вид электронных весоизмерительных устройств

Весы снабжены следующими устройствами и функциями (в скобках указаны соответствующие пункты ГОСТ OIML R 76-1–2011):

- устройство первоначальной установки на нуль (Т.2.7.2.4);
- устройство слежения за нулем (Т.2.7.3);
- полуавтоматическое устройство установки на нуль (Т.2.7.2.2)
- устройство уравновешивания тары выборки массы тары (Т.2.7.4.1);
- устройство предварительного задания значения массы тары (Т.2.7.5) (только для весоизмерительных приборов Микросим, MATRIX II и VT300);
- показывающее устройство с расширением при использовании электронного весоизмерительного устройства DIS2116 (Т.2.6);
 - запоминающее устройство (4.4.6);

- обнаружение промахов (5.2);
- выбор различных единиц измерения массы (2.1).

Обозначение модификаций весов имеет вид:

BECTA- X_1 -(D), где:

 X_1 – максимальная нагрузка (Max), т;

D — условное обозначение для весов, с цифровыми датчиками (для весов с аналоговыми датчиками индекс отсутствует).

Значения максимальной нагрузки Max (Max_i диапазонов взвешивания многодиапазонных весов), минимальной нагрузки Min (Min_i диапазонов взвешивания многодиапазонных весов), поверочного интервала e (e_i диапазонов взвешивания многодиапазонных весов) наносятся на маркировочную табличку, закрепляемую на $\Gamma\Pi Y$ и/или индикаторе (терминале) весов.

Для связи с периферийными устройствами (например, принтеры, электронные регистрирующие устройства, дублирующее табло, ПК) весы могут оснащаются интерфейсами RS-232, RS-485, USB.

Знак поверки наносится на корпус электронного весоизмерительного устройства. Схема пломбировки от несанкционированного доступа приведена на рисунках 1–7.

Микросим, модификации М0601 и М0601-БМ-2

Рисунок 1 — Схема пломбировки весоизмерительного прибора Микросим от несанкционированного доступа

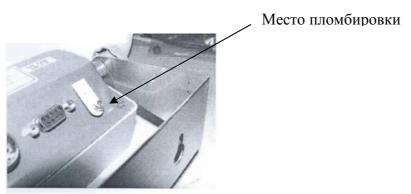


Рисунок 2 — Схема пломбировки весоизмерительного прибора CI (модификация CI-2400BS) от несанкционированного доступа

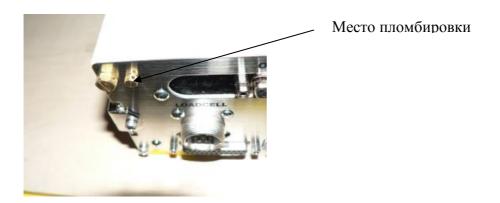


Рисунок 3 — Схема пломбировки весоизмерительного прибора CI (модификация CI-5010A) от несанкционированного доступа

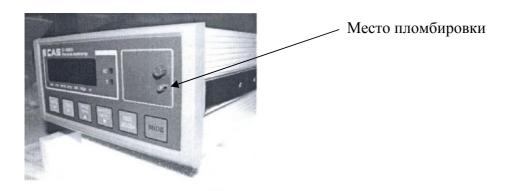
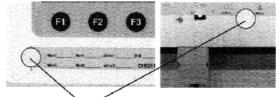



Рисунок 4 – Схема пломбировки весоизмерительного прибора CI (модификация CI-6000A) от несанкционированного доступа

Место пломбировки с помощью разрушаемой наклейки (переключатель режима настройки — слева; винт крепления кожуха — справа)

Рисунок 5 — Схема пломбировки весоизмерительного прибора DIS2116 от несанкционированного доступа

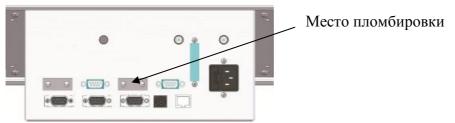


Рисунок 6 — Место пломбировки весоизмерительного прибора MATRIX II с помощью разрушаемой наклейки

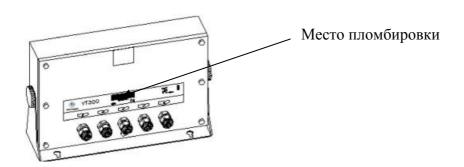


Рисунок 7 — Место пломбировки весоизмерительного прибора VT-300 от несанкционированного доступа с помощью разрушаемой наклейки

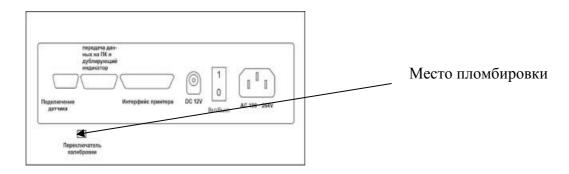


Рисунок 8 – Место пломбировки весоизмерительного прибора DS3SS от несанкционированного доступа с помощью разрушаемой наклейки

Программное обеспечение

Программное обеспечение (далее - ПО) весов является встроенным, используется в стационарной (закрепленной) аппаратной части с определенными программными средствами.

Защита ПО и измерительной информации от преднамеренных и непреднамеренных воздействий соответствует требованиям ГОСТ OIML R 76-1–2011 п. 5.5.1 «Устройства со встроенным программным управлением». ПО не может быть модифицировано или загружено через какой-либо интерфейс или с помощью других средств после принятия защитных мер.

Защита от несанкционированного доступа к настройкам и данным измерений обеспечивается невозможностью изменения ПО без применения специализированного оборудования производителя.

Изменение ПО весов через интерфейс пользователя невозможно.

Кроме того, для защиты от несанкционированного доступа к параметрам юстировки и настройки, а также измерительной информации, используется пломбируемый переключатель.

Доступ к изменению настроек, калибровочных параметров и данных измерений защищен паролем. Для защиты ПО используется журнал событий, который хранится в зашифрованном виде. Параметры, определяющие технические и метрологические характеристики весов, в том числе показатели точности хранятся в микросхеме EEPROM, а также продублированы в ПЗУ. При несовпадении хранящихся значений, соответствующая запись вносится в журнал событий. Любые изменения вносятся в журнал событий, хранящийся в EEPROM.

Защита ПО от преднамеренных и непреднамеренных воздействий соответствует уровню «высокий» по Р 50.2.077-2014. Идентификационные данные ПО приведены в

таблицах 1-2. Идентификационные данные ПО отображаются на дисплее индикатора (терминала) при включении весов.

Таблица 1

	Значение					
Идентификационные данные (признаки)	Микросим М0601	-	CI-2400BS	CI-5010A	CI-6000A	
1	2					
Идентификационное наименование ПО	-	-	ı	-	-	
Номер версии (идентификационный номер) ПО	не ниже Ed 5.xx*	не ниже Ed 5.xx*	не ниже 1.00, 1.01, 1.02	не ниже 1.00, 1.01, 1.02	не ниже 1.00, 1.01, 1.02	
Цифровой идентификатор ПО	0x3C49	0x3C49	-	-	-	
Другие идентификационные данные, если имеются	-	-	-	-	-	

^{*} Примечание - обозначение «х» не относятся к метрологически значимому ПО.

Таблица 2

Идентификационные данные	Значение				
(признаки)	DIS2116	MATRIX II	VT300	DS3SS	
1	2				
Идентификационное наименование ПО	-	-	-	1	
Номер версии (идентификационный номер) ПО	не ниже Р 104	не ниже 1. xxx*	не ниже VT300SR_EWB .AZ	Не ниже 1.1	
Цифровой идентификатор ПО	-	-	-	-	
Другие идентификационные данные, если имеются	-	-	-	-	

^{*} Примечание - обозначение «х» не относятся к метрологически значимому ПО.

Метрологические и технические характеристики

Метрологические характеристики приведены в таблицах 3-6. Таблица 3

	Модификации					
Характеристика	BECTA-20-(D)	BECTA-20-(D) BECTA-30-(D) BECTA-40-(D) BE		BECTA-60-(D)	BECTA-80-(D)	
Класс точности по ГОСТ OIML R 76-1– 2011	III					
Максимальная нагрузка (Мах), т	20	30	40	60	80	
Поверочный интервал (e) и действительная цена деления шкалы (d) e = d , т	0,01	0,01	0,02	0,02	0,05	

Продолжение таблицы 3

Число поверочных интервалов (n)	2000	3000	2000	3000	1600	
Диапазон						
уравновешивания	100% Max					
тары						
Диапазон						
предварительного	100% Max					
задания значения						
массы тары						

Таблица 4

V	Модификации		
Характеристика	BECTA-100-(D)	BECTA-120-(D)	
Класс точности по ГОСТ OIML R 76-1-2011	III		
Максимальная нагрузка (Мах), т	100	120	
Поверочный интервал, (e) действительная цена деления шкалы, (d) , $e=d$, т	0,05	0,05	
Число поверочных интервалов (n)	2000	2400	
Диапазон уравновешивания тары	100% Max		
иапазон предварительного задания значения массы тары 100% Мах		6 Max	

Таблица 5 – Метрологические характеристики весов с двумя диапазонами взвешивания

таолица 3 - метрологи теские характеристики всеов е двуми днаназопами взвешивания					
V	Модификации				
Характеристика	BECTA-40-(D)	BECTA-60-(D)	BECTA-80-(D)		
Класс точности по ГОСТ OIML R 76-1-2011		III			
Максимальная нагрузка, кг					
Диапазон взвешивания $W1 (Max_1)$	30000	30000	60000		
Диапазон взвешивания W2 (Max ₂)	40000	60000	80000		
Поверочный интервал, е, действительная цена					
деления шкалы, d ($e=d$), кг					
Диапазон взвешивания $W1 (e_1)$	10	10	20		
Диапазон взвешивания $W2 (e_2)$	20	20	50		
Число поверочных интервалов, п					
Диапазон взвешивания $W1$ (n_1)	3000	3000	3000		
Диапазон взвешивания $W2 (n_2)$	2000	3000	1600		
Диапазон уравновешивания тары	100 % Max ₂				

Таблица 6 – Метрологические характеристики весов с двумя диапазонами взвешивания

Характеристика	Модификации		
Тарактерпетика	BECTA-100-(D)	BECTA-120-(D)	
Класс точности по ГОСТ OIML R 76-1-2011	CT OIML R 76-1–2011 III		
Максимальная нагрузка, кг			
Диапазон взвешивания W1 (Max_1)	60000	60000	
Диапазон взвешивания W2 (Max ₂)	100000	120000	

Продолжение	таблицы	6
-------------	---------	---

Поверочный интервал, е, действительная цена деления		
шкалы, d (e = d), кг		
Диапазон взвешивания $W1(e_1)$	20	20
Диапазон взвешивания $W2(e_2)$	50	50
Число поверочных интервалов, п		
Диапазон взвешивания W1 (n_1)	3000	3000
Диапазон взвешивания $W2$ (n_2)	2000	2400
Диапазон уравновешивания тары	100 % Max ₂	

Диапазон температур для ГПУ, °С:

 при использовании датчиков № 	M/0K, M100, MB150	от минус 30 до плюс 40;
 – при использовании датчиков 7 	740, 740D	от минус 30 до плюс 40;

- при использовании датчиков HM9B, BM14G от минус 30 до плюс 40;
- при использовании датчиков С16A,С16i– от минус 50 до плюс 50;
- при использовании датчиков DHM9B10, DBM14G..... от минус 30 до плюс 40;

Диапазон температур для весоизмерительных устройств, °С:

- прибор весоизмерительный Микросим, модификации М0601, М0601-БМ-2 от минус 35 до плюс 50;
- прибор весоизмерительный СІ, модификации СІ-2400BS, СІ-5010A, СІ-6000A
- от минус 10 до плюс 40; – прибор весоизмерительный (терминал) DIS2116 от минус 10 до плюс 40;
- весоизмерительный (терминал) Matrix II..... от минус 10 до плюс 40;
- весоизмерительный прибор (терминал) VT300..... от минус 10 до плюс 40;
- весоизмерительный прибор (терминал) DS3SSот минус 10 до плюс 40.

Параметры электропитания от сети переменного тока:

Знак утверждения типа

наносится на маркировочные таблички, расположенные на корпусе ГПУ и/или индикатора (терминала), а также типографским способом на титульные листы эксплуатационной документации.

Комплектность средства измерений

Весы	шт.
Руководство по эксплуатации1	экз.
Руководство по эксплуатации электронного весоизмерительного устройства (в	
соответствии с составом весов)	экз.

Поверка

осуществляется в соответствии с документом ГОСТ OIML R 76-1-2011, приложение ДА «Методика поверки весов», «Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания».

Идентификационные данные, а также процедура идентификации программного обеспечения приведены в соответствующих руководствах по эксплуатации электронных весоизмерительных устройств.

Основные средства поверки: гири, соответствующие классу точности M_{1-2} по ΓΟCT OIML R 111-1-2009.

Сведения о методиках (методах) измерений

«Весы автомобильные электронные ВЕСТА. Руководство по эксплуатации», раздел «2 Использование по назначению».

Нормативные и технические документы, устанавливающие требования к весам автомобильным электронным ВЕСТА

- 1. ГОСТ OIML R 76-1–2011 «Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания»
- 2. ГОСТ 8.021-2005 «ГСИ. Государственная поверочная схема для средств измерений массы»
- 3. ТУ 4274-001-77873514-2015 «Весы автомобильные электронные ВЕСТА».

Изготовитель

Общество с ограниченной ответственностью «Весовая Компания «Тензосила» (ООО «ВК «Тензосила»)

ИНН 3662212108

Адрес: 394005, г. Воронеж, ул. Владимира Невского, 25/5

Тел.: +7(473) 296-45-00, 296-45-01

e-mail: mail@tenzosila.ru

www.tenzosila.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, 46 Тел./факс: (495) 437-55-77/ 437-56-66 e-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа №30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

		⁄бев

М.п. « ___ » ____ 2015 г.