ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «Атомэнергопромсбыт» (АО «ВНИИНМ им. А.А.Бочвара»)

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «Атомэнергопромсбыт» (АО «ВНИИНМ им. А.А.Бочвара») (далее - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень – измерительно-информационные комплексы (ИИК), которые включают в себя трансформаторы тока (далее – ТТ) по ГОСТ 7746-2001, трансформаторы напряжения (далее – ТН) по ГОСТ 1983-2001 и счетчики активной и реактивной электроэнергии по ГОСТ 30206-94, ГОСТ Р 52323-2005 в режиме измерений активной электроэнергии и по ГОСТ 26035-83, ГОСТ Р 52425-2005 в режиме измерений реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблице 2.

2-й уровень – информационно-вычислительный комплекс (ИВК), включающий в себя каналообразующую аппаратуру, сервер баз данных (БД) АИИС КУЭ, установленный в помещении главного энергетика АО «ВНИИНМ им. А.А. Бочвара», сервер АО «Атомэнергопромсбыт», автоматизированные рабочие места персонала (АРМ), программное обеспечение (далее – ПО) ПО «Пирамида 2000» и УСВ-3.

Измерительные каналы (далее – ИК) состоят из двух уровней АИИС КУЭ.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Для ИК №7, 8 цифровой сигнал с выходов счетчиков по каналу связи сети Internet поступает на сервер базы данных, установленный в помещении главного энергетика АО «ВНИИНМ им. А.А. Бочвара».

Для остальных ИК цифровой сигнал с выходов счетчиков по проводным линиям связи интерфейса RS-485 поступает на преобразователь MOXA NPort 5430, далее по каналу связи сети Ethernet поступает на сервер базы данных, установленный в помещении главного энергетика АО «ВНИИНМ им. А.А. Бочвара». На сервере базы данных выполняется обработка измерительной информации, в частности, осуществляется вычисление электроэнергии и

мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление отчетных документов. Из сервера базы данных информация передается по каналу связи Internet в виде xml-макета формата 80020 на сервер АО «Атомэнергопромсбыт».

Передача информации от сервера АО «Атомэнергопромсбыт» в ПАК ОАО «АТС» за подписью ЭЦП субъекта ОРЭ и другие смежные субъекты ОРЭ осуществляется по каналу связи с протоколом TCP/IP сети Internet в виде xml-файлов формата 80020 в соответствии с приложением 11.1.1 «Формат и регламент предоставления результатов измерений, состояния средств и объектов измерений в ОАО «АТС», ОАО «СО ЕЭС» и смежным субъектам» к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мощности.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровень счетчиков и ИВК. АИИС КУЭ оснащена устройствами синхронизации времени УСВ-3, синхронизирующими часы измерительных компонентов системы по сигналам проверки времени, получаемым от ГЛОНАСС/GPS-приемника. Пределы допускаемой абсолютной погрешности временного положения фронта синхросигнала 1 Γ ц относительно шкалы времени UTС и UTC(SU) для УСВ-3 ± 100 мкс.

Сервер АО «Атомэнергопромсбыт», периодически сравнивает свое системное время со временем в УСВ-3. Сличение часов сервера осуществляется не реже чем 1 раз в час, коррекция часов осуществляется независимо от наличия расхождений.

Сервер базы данных, установленный в помещении главного энергетика АО «ВНИИНМ им. А.А. Бочвара», периодически сравнивает свое системное время со временем в УСВ-3. Сличение часов сервера осуществляется не реже чем 1 раз в час, коррекция часов осуществляется независимо от наличия расхождений. Сравнение показаний часов счетчиков и сервера базы данных производится во время сеанса связи со счетчиками (1 раз в 30 минут). Корректировка осуществляется при расхождении показаний часов счетчиков и сервера базы данных ± 2 с, но не чаще 1 раза в сутки. Погрешность часов компонентов АИИС КУЭ не превышает ± 5 с.

Журналы событий счетчика электроэнергии и сервера БД отражают: время (дата, часы, минуты) до и после проведения процедуры коррекции часов указанных устройств.

Программное обеспечение

В АИИС КУЭ АО «Атомэнергопромсбыт» (АО «ВНИИНМ им. А.А.Бочвара») используется ПО «Пирамида» версии не ниже 3.0, в состав которого входят программы, указанные в таблице 1. ПО «Пирамида» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО «Пирамида».

Таблица 1 – Метрологические значимые модули ПО

		Номер вер-	Цифровой иден-	Алгоритм вы-	
	Идентификацион-	сии (иден-	тификатор ПО	числения циф-	
Наименование ПО	ное наименование	тификаци-	(контрольная сум-	рового иден-	
Transferrobatine 110	ПО	онный но-	ма исполняемого	тификатора	
	110	мер) ПО	кода)	ПО	
Модуль вычисле-		мер) 110	коди)	110	
ния значений					
энергии и мощно-	CalcClients.dll	3	e55712d0b1b21906	MD5	
сти по группам	Carcenents.un		5d63da949114dae4	WIDS	
точек учета					
Модуль расчета					
	Colol cologo dil	3	b1959ff70be1eb17c	MD5	
небаланса энер-	CalcLeakage.dll		83f7b0f6d4a132f		
гии/мощности					
Модуль вычисле-					
ния значений			d79874d10fc2b156 a0fdc27e1ca480ac	MD5	
энергии потерь в	CalcLosses.dll	3			
линиях и транс-					
форматорах					
Общий модуль,					
содержащий		3	52e28d7b608799bb 3ccea41b548d2c83		
функции, исполь-					
зуемые при вы-	Metrology.dll			MD5	
числениях раз-	wichology.dii			WIDS	
личных значений					
и проверке точно-					
сти вычислений					
Модуль обработки					
значений физиче-			6f57f005h7272612		
ских величин, пе-	ParseBin.dll	3	6f557f885b7372613	MD5	
редаваемых в би-			28cd77805bd1ba7		
нарном протоколе					
Модуль обработки					
значений физиче-					
ских величин, пе-	D 150 111	2	48e73a9283d1e664	145.5	
редаваемых по	ParseIEC.dll	3	94521f63d00b0d9f	MD5	
протоколам се-					
мейства МЭК					
Модуль обработки					
значений физиче-		3	201 164271 64077	MD5	
ских величин, пе-	ParseModbus.dll		c391d64271acf4055		
редаваемых по			bb2a4d3fe1f8f48		
протоколу Modbus					

Продолжение таблицы 1

продолжение таолип	(DI I			,
Наименование ПО	Идентификацион- ное наименование ПО	Номер вер- сии (иден- тификаци- онный но- мер) ПО	Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификатора ПО
Модуль обработки значений физических величин, передаваемых по протоколу Пирамида	ParsePiramida.dll	3	ecf532935ca1a3fd3 215049af1fd979f	MD5
Модуль формирования расчетных схем и контроля целостности данных нормативносправочной информации	SynchroNSI.dll	3	530d9b0126f7cdc2 3ecd814c4eb7ca09	MD5
Модуль расчета величины рассин- хронизации и зна- чений коррекции времени	VerifyTime.dll	3	1ea5429b261fb0e28 84f5b356a1d1e75	MD5

Системы информационно-измерительные контроля и учета энергопотребления «Пирамида», включающее в себя ПО «Пирамида 2000», внесены в Госреестр №21906-11.

Пределы допускаемой дополнительной абсолютной погрешности по электроэнергии, получаемой за счет математической обработки измерительной информации, поступающей от счетчиков, составляют 1 единицу младшего разряда измеренного значения.

Пределы допускаемых относительных погрешностей по активной и реактивной электроэнергии, а также для разных временных (тарифных) зон не зависят от способов передачи измерительной информации и определяются классами точности применяемых электросчетчиков и измерительных трансформаторов.

Метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2, нормированы с учетом ΠO .

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав измерительных каналов и их метрологические характеристики приведены в таблице 2

Таблица 2 - Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики

			Измерительные компоненты				Метроло характери	гические стики ИК	
Номер п/п	Номер ИК	Наименова- ние объекта	TT	ТН	Счётчик	ИВК	Вид электроэнергии	Основ- ная по- греш- ность, %	Погрешность в рабочих условиях, %
1	2	3	4	5	6	7	8	9	10
				АО «ВНИИНМ им.	А.А.Бочвара»				
1	1	РТП-12041 10/0,4 кВ, ввод от КЛ- 10кВ 12041 α+β	ТПЛ-10 Кл. т. 0,5 150/5 Зав. № 393338; Зав. № 40557	НТМИ-10-66 Кл. т. 0,5 10000/100 Зав. № 2277	СЭТ-4ТМ.02.2 Кл. т. 0,5S/1,0 Зав. № 01060456	HP Proliant DL160 Gen9	активная	±1,2 ±2,8	±3,5 ±5,7
2	2	РТП-12041 10/0,4 кВ, ввод от КЛ- 10кВ 12041 Υ+δ	ТПЛ-10; ТПЛ-10 УЗ Кл. т. 0,5 150/5 Зав. № 38771; Зав. № 11266	НТМИ-10-66 Кл. т. 0,5 10000/100 Зав. № 2662	СЭТ-4ТМ.02.2 Кл. т. 0,5S/1,0 Зав. № 01060455	3aB. № CZ2446039P HP Proliant DL180 Gen6	активная	±1,2 ±2,8	±3,5 ±5,7
3	3	РТП-10181 10/0,4 кВ, ввод от КЛ- 10кВ 10181 α	ТПЛ-10-М; ТПЛ-10с Кл. т. 0,5 150/5 Зав. № 2877; Зав. № 0122	НОМ-10 Кл. т. 0,5 10000/100 Зав. № 1410; Зав. № 980	СЭТ-4ТМ.02.2 Кл. т. 0,5S/1,0 Зав. № 01060297	3aв. № CZJ033031L	активная	±1,2 ±2,8	±3,5 ±5,7

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9	10
4	4	РТП-10181 10/0,4 кВ, ввод от КЛ- 10кВ 10181 ß	ТПЛ-10с Кл. т. 0,5 150/5 Зав. № 2206; Зав. № 0156	НОМ-10 Кл. т. 0,5 10000/100 Зав. № 542; Зав. № 685	СЭТ-4ТМ.02.2 Кл. т. 0,5S/1,0 Зав. № 01060446	HP Proliant	активная	±1,2 ±2,8	±3,5 ±5,7
5	7	ТП-11391 10/0,4кВ, Ввод-0,4кВ Т-3	ТК-20 Кл. т. 0,5 1000/5 Зав. № 20017; Зав. № 20019; Зав. № 51377	-	ПСЧ- 4ТМ.05МК.04 Кл. т. 0,5S/1,0 Зав. № 1103151062	DL160 Gen9 3ab. № CZ2446039P HP Proliant DL180 Gen6	активная	±1,0 ±2,4	±3,4 ±5,9
6	8	ТП-11391 10/0,4кВ, Ввод-0,4кВ Т-4	ТК-20 Кл. т. 0,5 1000/5 Зав. № 51330; Зав. № 95403; Зав. № 21649	-	ПСЧ- 4ТМ.05МК.04 Кл. т. 0,5S/1,0 Зав. № 1103151013	Зав. № CZJ033031L	активная	±1,0 ±2,4	±3,4 ±5,9

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
 - 3. Нормальные условия эксплуатации:
- параметры сети: напряжение (0.98-1.02) Uном; ток (1.0-1.2) Іном, частота (50 ± 0.15) Γ ц; \cos j=0.9 инд.;
- температура окружающей среды: ТТ и ТН от плюс 15 °C до плюс 35 °C; счетчиков от плюс 21 °C до плюс 25 °C; ИВК от плюс 10 °C до плюс 30 °C;
 - относительная влажность воздуха (70 ± 5) %;
 - атмосферное давление (100 \pm 4) кПа;
 - магнитная индукция внешнего происхождения, не более 0,05 мТл.
 - 4. Рабочие условия эксплуатации:
 - для ТТ и ТН:
 - параметры сети: диапазон первичного напряжения (0.9 1.1) UH₁; диапазон силы первичного тока (0.05 1.2) IH₁; коэффициент мощности соsį (sinį) 0.5 1.0 (0.87 0.5); частота (50 ± 0.4) Γ Ц;
 - температура окружающего воздуха от минус 40 °C до плюс 70 °C.
 - для счетчиков электроэнергии:
 - параметры сети: диапазон вторичного напряжения (0.9 1.1) UH₂; диапазон силы вторичного тока (0.01 1.2) IH₂; коэффициент мощности cosj (sinj) 0.5 1.0 (0.87 0.5); частота (50 ± 0.4) Γ ц;
 - относительная влажность воздуха (40 60) %;
 - атмосферное давление (100 \pm 4) кПа;
 - температура окружающего воздуха:
 - для счётчиков электроэнергии СЭТ-4ТМ.02.2 от минус 40 °C до плюс 55 °C;
 - для счётчиков электроэнергии ПСЧ-4ТМ.05МК.04 от минус 40 °C до плюс 60 °C ·
 - магнитная индукция внешнего происхождения, не более 0,5 мТл.
 - для аппаратуры передачи и обработки данных:
 - параметры питающей сети: напряжение (220 ± 10) B; частота (50 ± 1) Гц;
 - температура окружающего воздуха от плюс 10 °C до плюс 30 °C;
 - относительная влажность воздуха (70 ± 5) %;
 - атмосферное давление (100 ± 4) кПа.
- 5. Погрешность в рабочих условиях указана для $\cos j=0.8$ инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК № 1 4, 7, 8 от минус 10 °C до плюс 40 °C.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- УСВ-3 среднее время наработки на отказ не менее $T=45000~\rm y$, среднее время восстановления работоспособности $t=2~\rm y$;
- электросчётчик СЭТ-4ТМ.02.2 среднее время наработки на отказ не менее $T=90000\,\mathrm{y}$, среднее время восстановления работоспособности $t = 2\,\mathrm{y}$;
- электросчётчик ПСЧ-4ТМ.05МК.04 среднее время наработки на отказ не менее T=165000 ч, среднее время восстановления работоспособности tв = 2 ч;
- сервер среднее время наработки на отказ не менее T=256554 ч, среднее время восстановления работоспособности t=1 ч.

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал сервера:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и сервере;
 - пропадание и восстановление связи со счетчиком;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о состоянии средств измерений;
- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях не менее 113 суток; сохранение информации при отключении питания не менее 10 лет;
- Сервер БД хранение результатов измерений, состояний средств измерений не менее 3,5 лет (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) АО «Атомэнергопромсбыт» (АО «ВНИИНМ им. А.А.Бочвара») типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 3.

Таблица 3 - Комплектность АИИС КУЭ

Наименование	Тип	№ Госреестра	Количество, шт.
Трансформаторы тока проходные с литой изоляцией	ТПЛ-10	1276-59	3
Трансформаторы тока проходные с литой изоляцией	ТПЛ-10 У3	1276-59	1
Трансформаторы тока	ТПЛ-10-М	22192-03	1
Трансформаторы тока	ТПЛ-10с	29390-05	3
Трансформаторы тока стационарные	TK-20	1407-60	6
Трансформаторы напряжения	НТМИ-10-66	831-69	2
Трансформаторы	HOM-10	363-49	4
Счетчики активной и реактивной энергии переменного тока статические многофункциональные	СЭТ-4ТМ.02.2	20175-01	4
Счетчики электрической энергии многофункциональные	ПСЧ-4ТМ.05МК.04	46634-11	2
Устройство синхронизации времени	УСВ-3	51644-12	2
Программное обеспечение	«Пирамида»	-	1
Методика поверки			1
Формуляр	-	-	1

Поверка

осуществляется по документу МП 62246-15 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «Атомэнергопромсбыт» (АО «ВНИИНМ им. А.А.Бочвара»). Измерительные каналы. Методика поверки», утвержденному Φ ГУП «ВНИИМС» в мае 2015 г.

Перечень основных средств поверки:

- · трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- · по МИ 3195-2009 «ГСИ. Мощность нагрузки трансформаторов напряжения. Методика выполнения измерений без отключения цепей»;
- · по МИ 3196-2009 «ГСИ. Вторичная нагрузка трансформаторов тока. Методика выполнения измерений без отключения цепей»;
- · счетчиков СЭТ-4ТМ.02.2 по документу «Счетчики активной и реактивной электрической энергии переменного тока, статические, многофункциональные СЭТ-4ТМ.02. Руководство по эксплуатации. ИЛГШ.411152.087 РЭ1», раздел «Методика поверки», согласованному с ГЦИ СИ «Нижегородский ЦСМ» в 2001 г.;

- · счетчиков ПСЧ-4ТМ.05МК.04 по документу «Счетчик электрической энергии многофункциональный ПСЧ-4ТМ.05МК. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.167РЭ1, согласованному с ГЦИ СИ ФБУ «Нижегородский ЦСМ» 21 марта 2011 г.;
- · Устройство синхронизации времени УСВ-3 по документу «Инструкция. Устройства синхронизации времени УСВ-3. Методика поверки ВЛСТ 240.00.000 МП», утвержденному ГЦИ СИ ФГУП «ВНИИФТРИ» в 2012 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04;
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01;
- · термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до плюс 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100%, дискретность 0,1%.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе «Методика измерений электрической энергии КУЭ АИИС «Атомэнергопромсбыт» (AO «ВНИИНМ использованием AO А.А.Бочвара»), аттестованной ΦГУП «ВНИИМС», аттестат об аккредитации № 01.00225-2011 от 29.06.2011 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) АО «Атомэнергопромсбыт» (АО «ВНИИНМ им. А.А.Бочвара»)

- 1 ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.
- 2 ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.
- $3\ \Gamma OCT\ P\ 8.596-2002\ \Gamma CИ.$ Метрологическое обеспечение измерительных систем. Основные положения.

Изготовитель

Общество с ограниченной ответственностью «Техпроминжиниринг»

(ООО «Техпроминжиниринг»)

ИНН 2465209432

Адрес: 660127, г.Красноярск, ул. Мате Залки, 4 «Г»

Тел./факс: 7 (391) 277-66-55

Заявитель

Общество с ограниченной ответственностью «Энергостандарт» (ООО «Энергостандарт»)

Юридический адрес: 123056 г. Москва, ул. Большая Грузинская, д.42, помещение I, комната 12

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д. 46 Тел./факс: 8 (495) 437-55-77 / 437-56-66 E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений

в целях утверждения типа № 30004-13 от 26.07.2013 г.

Ваместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

М.п. «___»____2015 г.