ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО «ЛУКОЙЛ-Нижегороднефтеоргсинтез» третьей очереди

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО «ЛУКОЙЛ-Нижегороднефтеоргсинтез» третьей очереди (далее АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии и мощности за интервалы времени.

Описание средства измерений

АИИС КУЭ является трехуровневой системой с иерархической распределенной обработкой информации:

- первый уровень измерительных каналов (далее ИК);
- второй уровень информационно-вычислительного комплекса электроустановки (далее ИВКЭ);
 - третий уровень информационно-вычислительного комплекса (далее ИВК).

В состав АИИС КУЭ входит система обеспечения единого времени (далее – СОЕВ), формируемая на всех уровнях иерархии.

АИИС КУЭ решает следующие задачи:

- измерение 30-ти минутных приращений активной и реактивной электроэнергии и автоматический сбор результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин), привязанных к шкале UTC;
 - автоматическое выполнение измерений;
 - автоматическое ведение системы единого времени;
 - регистрация параметров электропотребления;
- формирование отчетных документов и передачи информации другим смежным субъектам оптового рынка электроэнергии (OPЭ).

АИИС КУЭ включает следующие уровни:

- 1-й уровень состоит из 2 ИК и включает в себя:
- измерительные трансформаторы тока (TT) класса точности 0,2S;
- измерительные трансформаторы напряжения (ТН) класса точности 0,2;
- счетчики электрической энергии трехфазные многофункциональные Альфа A1800 класса точности 0,2S/0,5;
 - вторичные измерительные цепи.
 - 2-й уровень ИВКЭ включает в себя:
 - устройство сбора и передачи данных (далее УСПД) типа RTU-327
 - аппаратуру передачи данных по внутренним каналам связи.
 - 3-й уровень ИВК включает в себя:
 - сервер базы данных;
 - аппаратуру передачи данных по внутренним и внешним каналам связи;
- автоматизированные рабочие места (далее APM) персонала и специализированное программное обеспечение (далее ПО).

Первичные фазные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы счетчика. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения

активной и полной мощности, которые усредняются за период 0.02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровые сигналы с выходов счетчиков по проводным линиям связи интерфейса RS-485 с последующим преобразованием в интерфейс Ethernet поступают в УСПД. В УСПД осуществляется хранение измерительной информации, ее накопление и передача накопленных данных в сервер базы данных с помощью оборудования связи по основному и резервному каналам связи.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ), созданной на основе устройства синхронизации системного времени УССВ-35 HVS, включающего в себя приемник сигналов точного времени от спутников глобальной системы позиционирования GPS. GPS-приемник ежесекундно без обработки передает в УСПД сигналы точного времени с точностью до одной десятой секунды. Таким образом, точность хода часов в УСПД составляет \pm 0,1 с. При каждом сеансе связи и не реже чем 1 раз в 30 минут осуществляется сличение времени между счетчиком и УСПД. Коррекция осуществляется при обнаружении рассогласования более чем на \pm 1 с. Погрешность системного времени не превышает предела абсолютной суточной погрешности измерения текущего времени, равного \pm 5 с.

Регламентированный доступ к информации APM персонала осуществляется через сегмент локальной вычислительной сети (ЛВС) предприятия по интерфейсу Ethernet.

Механическая защита от несанкционированного доступа обеспечивается пломбированием:

- испытательной коробки (специализированного клеммника);
- крышки клеммных отсеков счетчиков;
- УСПД.

Программное обеспечение

В АИИС КУЭ используется программное обеспечение «Альфа-ЦЕНТР», в состав которого входят программы, указанные в таблице 1. ПО обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое ПО «Альфа-ЦЕНТР».

Таблица 1 – Метрологические значимые молули ПО

Таолица 1 – Метрологические значимые модули ПО						
Идентификационные признаки	Значение					
Идентификационное наименование ПО Номер версии (иден-	Am- rserver.exe	Amrc.exe	Amra.exe	Cdbora2.	En- cryptdll.dll	Al- phamess.dll
тификационный номер) ПО	Версия 4					
Цифровой иденти- фикатор ПО	9fe73a9049 33fac4f0f0 5992d297f 055	E05ee8be d68da05ac 30efffb0fa 1ba1b	edc1a15eb db5d1c53 b466d053 d57a23a	9cdaa52 6f63781 79847fcc 4cab811 0ce	0939ce052 95fbcbbba 400eeae8d 0572c	b8c331abb 5e344441 70eee9317 d635cd
Алгоритм вычисления цифрового идентификатора ПО			MD	05		

Функции программного обеспечения (метрологически не значимой части):

- периодический (1 раз в 30 мин) и/или по запросу автоматический сбор результатов измерений с заданной дискретностью учета (30 мин);
 - автоматическая регистрация событий в «Журнале событий»;
- хранение результатов измерений и информации о состоянии средств измерений в специализированной базе данных;
- автоматическое получение отчетов, формирование макетов согласно требованиям получателей информации, предоставление результатов измерений и расчетов в виде таблиц, графиков с возможностью получения печатной копии;
- использование средств электронной цифровой подписи для передачи результатов измерений в интегрированную автоматизированную систему управления коммерческим учетом Коммерческого оператора (ИАСУ КУ (КО));
- конфигурирование и параметрирование технических средств программного обеспечения;
- предоставление пользователям и эксплуатационному персоналу регламентированного доступа к данным;
- сбор недостающих данных после восстановления работы каналов связи, восстановления питания;
- передача в автоматизированном режиме в ИАСУ КУ (КО) смежным субъектам ОРЭ результатов измерений;
 - автоматический сбор данных о состоянии средств измерений;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.д.);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ.

Функции программного обеспечения (метрологически значимой части):

- обработка результатов измерений в соответствии с параметрированием УСПД;
- автоматическая синхронизация времени (внутренних часов).

Уровень защиты от непреднамеренных и преднамеренных изменений – «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристикиСостав измерительных каналов и их метрологические характеристики приведены в таблице 2-4.

Таблица 2 – Состав измерительных каналов АИИС КУЭ

×		Состав измерительного канала					
Номер ИК	Наименование объекта	TT	ТН	Счётчик	ИВК, СОЕВ	Вид электро- энергии	
1	2	3	4	5	6	7	
		SB 0,8	SU 170/S	Альфа А1800		активная	
1	ГПП-4 Т-1	Коэф. тр. 250/5	Коэф. тр. 110000:√3/100: √3	Кл.т. 0,2S/0,5	ИВКЭ RTU-327;		
		Кл.т. 0,2S	Кл.т. 0,2	10,25/0,5	HBR5 R10-321,	реактивная	
		SB 0,8	SU 170/S	Альфа А1800	УССВ-35 HVS	активная	
2	ГПП-4 Т-2	Коэф. тр. 250/5	Коэф. тр. 110000:√3/100: √3	Кл.т. 0,2S/0,5	3 CCB 33 11 VB		
		Кл.т. 0,2S	Кл.т. 0,2	KJ1.1. U,23/U,3		реактивная	

Таблица 3 - Метрологические характеристики ИК (активная энергия)

. 1	Диапазон тока	Метрологические характеристики ИК						
Номер ИК		Границы интервала отно- сительной основной по- грешности измерений, соответствующие веро- ятности P=0,95, %			Границы интервала отно- сительной погрешности измерений в рабочих ус- ловиях эксплуатации, со- ответствующие вероят- ности P=0,95, %			
		$\cos \varphi =$	$\cos \varphi =$	$\cos \varphi =$	cos φ	$\cos \varphi =$	$\cos \varphi =$	
		0,9	0,8	0,5	= 0,9	0,8	0,5	
1	2	3	4	5	6	7	8	
1; 2 (TT 0,2S; TH 0,2; Сч 0,2S)	Iн₁£I₁£1,2Iн₁	0,5	0,5	0,9	0,8	0,9	1,2	
	$0,2I_{H_1}$ £ I_1 < I_{H_1}	0,5	0,5	0,9	0,8	0,9	1,2	
	$0,1 \text{IH}_1 \pounds I_1 < 0,2 \text{IH}_1$	0,5	0,6	1,1	0,8	0,9	1,3	
	$0,05 I_{H_1} \pounds I_1 < 0,1 I_{H_1}$	0,6	0,7	1,2	0,9	1,0	1,4	
	$0,02 \text{IH}_1 \pounds I_1 < 0,05 \text{IH}_1$	1,0	1,1	1,8	1,2	1,3	1,9	

Таблица 4 - Метрологические характеристики ИК (реактивная энергия)

таолица 4 - Метрологические характеристики ит (реактивная энергия)								
	Диапазон тока	Метрологические характеристики ИК						
Номер ИК		сительн грешно соответ	ы интерва ной основ ости изме иствующи ости Р=0,9	ной по- рений, не веро-	Границы интервала отно- сительной погрешности измерений в рабочих ус- ловиях эксплуатации, со- ответствующие вероят- ности P=0,95, %			
		$\cos \varphi =$	$\cos \varphi =$	$\cos \varphi =$	$\cos \varphi =$	$\cos \varphi =$	$\cos \varphi =$	
		0,9	0,8	0,5	0,9	0,8	0,5	
1	2	3	4	5	6	7	8	
1; 2 (TT 0,2S; TH 0,2; Сч 0,5)	Iн₁£I₁£1,2Iн₁	1,2	0,9	0,7	1,8	1,6	1,6	
	$0,2I_{H_1} \pounds I_1 < I_{H_1}$	1,2	0,9	0,7	1,8	1,6	1,6	
	$0,1 \text{IH}_1 \pounds I_1 < 0,2 \text{IH}_1$	1,3	1,0	0,8	1,9	1,7	1,6	
	$0,05I_{H_1}$ £ I_1 < $0,1I_{H_1}$	1,7	1,2	0,9	2,2	1,8	1,7	
	$0,02I_{H_1}£I_1<0,05I_{H_1}$	2,3	1,8	1,4	2,7	2,2	2,0	

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0.95.
 - 3. Нормальные условия эксплуатации:
 - параметры сети:

диапазон напряжения (0,98 - 1,02) Uном;

диапазон силы тока (1 - 1,2) Іном,

частота (50±0,15) Гц;

коэффициент мощности $\cos j = 0.9$ инд.;

- температура окружающей среды:

```
TT и TH от минус 40 °C до плюс 50 °C;
счетчиков от плюс 21 °C до плюс 25 °C;
ИВК от плюс 10 °С до плюс 30 °С;
- магнитная индукция внешнего происхождения, не более 0,05 мТл.
4. Рабочие условия эксплуатации:
- для ТТ и ТН:
     – параметры сети:
     диапазон первичного напряжения (0,9 - 1,1) Uн<sub>1</sub>;
     диапазон силы первичного тока (0,02 - 1,2) Ін<sub>1</sub>;
     коэффициент мощности cosi (sini ) 0,5 - 1,0 (0,87 - 0,5);
     частота - (50 \pm 0.2) Гц;
     – температура окружающего воздуха от минус 40 °C до плюс 60 °C.
- для счетчиков электроэнергии:
     – параметры сети:
     диапазон вторичного напряжения (0,9 - 1,1) Uн2;
     диапазон силы вторичного тока (0,02 - 1,2) Ін<sub>2</sub>;
     коэффициент мощности cosi (sini ) 0,5 - 1,0 (0,87 - 0,5);
     частота (50 \pm 0.4) Гц;
     - температура окружающего воздуха от минус 40 °C до плюс 65 °C;
```

5. Погрешность в рабочих условиях указана для $\cos j = 0.8$ инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии от 0 °C до плюс 35 °C.

– магнитная индукция внешнего происхождения, не более - 0,5 мТл.

6. Допускается замена измерительных трансформаторов, счетчиков, УССВ-35 HVS и ИВКЭ RTU-327 на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2. Замена оформляется актом в установленном собственником порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- Электросчётчики Альфа A1800 (Госреестр №31857-11) среднее время наработки до отказа не менее T = 120 000 ч, среднее время восстановления работоспособности tв = 2 ч;
- УСПД среднее время наработки на отказ не менее $T=35\,000\,$ ч., среднее время восстановления работоспособности не более 24 ч.

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
 - журнал RTU-327:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и УСПД;
 - пропадание и восстановление связи со счетчиком;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - испытательной коробки;
 - УСПД RTU-327;
- защита на программном уровне информации при хранении, передаче, параметрирова-

нии:

- электросчетчика;
- УСПД RTU-327.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- ИВКЭ (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована);
- о состоянии средств измерений.

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Глубина хранения информации:

- электросчетчики A1800 тридцатиминутный профиль нагрузки в двух направлениях 300 суток; при отключении питания не менее 30 лет;
- УСПД RTU-327- хранение результатов измерений, состояний средств измерений не менее 5 лет (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учета электроэнергии ООО «ЛУКОЙЛ-Нижегороднефтеоргсинтез» третьей очереди типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 5.

Таблица 5 – Комплектность АИИС КУЭ

Наименование	Тип	№ Госреестра	Количество	
Трансформатор тока встроенный	SB 0,8	20951-06	6 шт.	
Трансформатор напряжения	SU 170/S	37115-08	6 шт.	
Счетчик электрической энергии трехфазный многофункциональный	Альфа А1800	31857-11	2 шт.	
Устройство сбора и передачи данных	RTU-327	41907-09	1 шт.	
Руководство пользователя	5767916-15233/1-143- ИОС2.И3	-	1 шт.	
Методика поверки	5767916-15233/1-143- ИОС2.МП	-	1 шт.	
Формуляр	-	-	1 шт.	

Поверка

осуществляется по документу 5767916-15233/1-143-ИОС2.МП «Система автоматизированная информационно-измерительная коммерческого учёта электроэнергии ООО «ЛУКОЙЛ-Нижегороднефтеоргсинтез» третьей очереди. Методика поверки», утвержденному Φ ГУП «ВНИИМС» 14.05.2015 г.

Перечень основных средств поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009. «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений»;
- по МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений»;
- счетчиков A1800 по документу «Счетчики электрической энергии трехфазные многофункциональные Альфа A1800. Методика поверки ДИЯМ.411152.018 МП», утвержденному ГЦИ СИ ФГУП «ВНИИМС» в 2011 г. и документу «Счетчики электрической энергии трехфазные многофункциональные Альфа A1800. Дополнение к методике поверки ДИЯМ.411152.018 МП», утверждённому в 2012 г.;
- УСПД RTU-327 по документу ДИЯМ.466215.007 МП «Устройства сбора и передачи данных серии RTU-327. Методика поверки», утвержденному ГЦИ СИ ФГУП «ВНИИМС» в 2009 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04;
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до плюс 60 °C, дискретность 0.1 °C; диапазон измерений относительной влажности от 10 до 100%, дискретность 0.1%.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе «Методика измерений количества электроэнергии с использованием АИИС КУЭ ООО «ЛУКОЙЛ- Нижегороднефтеоргсинтез» третьей очереди», аттестованном Некоммерческой организацией «Фонд поддержки инновационных программ НП «РОСИСПЫТАНИЯ» (Инновационный фонд «РОСИСПЫТАНИЯ»), аттестат об аккредитации № 01.00200-2011 от 04.02.2011 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учёта электроэнергии ООО «ЛУКОЙЛ-Нижегороднефтеоргсинтез» третьей очереди.

- 1. ГОСТ 22261-94. Средства измерений электрических и магнитных величин. Общие технические условия.
- 2. ГОСТ Р 8.596-2002. ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.
- 3. ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.

Изготовитель

Общество с ограниченной ответственностью «ЭТС-Проект» (ООО «ЭТС-Проект»)

Юридический адрес: 107078, Москва, Басманный переулок, дом 7, офис 5

ИНН 2130047148

Тел.: (831) 233-30-30, факс: (831) 233-30-31;

E-mail: ets-p@el-ts.ru

Заявитель

Общество с ограниченной ответсвенностью «Эльстер Метроника» (ООО «Эльстер Метроника») Юридический адрес: 111141, Российская Федерация, г. Москва, 1-й проезд Перова Поля д.9,стр.3. ИНН 7722000725

Телефон: (495) 730-0286, (495) 730-0287;

Сайт: www.elster.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д.46

Тел./факс: (495)437-55-77 / 437-56-66 E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации Φ ГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «__» _____ 2015 г.