ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии НПС «Нижнеудинская»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии НПС «Нижнеудинская» (далее АИИС КУЭ) предназначена для измерения активной и реактивной электрической энергии.

Описание средства измерений

АИИС КУЭ выполняет следующие функции:

- выполнение измерений 30-минутных приращений активной и реактивной электроэнергии, характеризующих оборот товарной продукции;
- периодический и по запросу автоматический сбор привязанных к времени в шкале UTC(SU) результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);
 - хранение данных об измеренных величинах в базе данных;
 - обеспечение резервирования баз данных на внешних носителях информации;
- разграничение доступа к базам данных для разных групп пользователей и фиксация в отдельном электронном файле всех действий пользователей с базами данных;
- передача результатов измерений по электронной почте внешним организациям;
- предоставление контрольного доступа к результатам измерений, данным о состоянии объектов и средств измерений по запросу со стороны внешних систем;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне;
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
 - конфигурирование и настройку параметров АИИС КУЭ;
 - ведение системы единого времени (коррекция времени).

АИИС КУЭ включает три уровня:

- 1-й уровень информационно-измерительные комплексы точек измерений (ИИК ТИ);
- 2-ой уровень измерительно-вычислительный комплекс электроустановки (ИВКЭ);
 - 3-ий уровень измерительно-вычислительный комплекс (ИВК).

ИИК ТИ включают в себя: трансформаторы тока (ТТ) со вторичными цепями; трансформаторы напряжения (ТН) со вторичными цепями; счётчики электроэнергии.

ТТ и ТН, входящие в состав ИИК ТИ, выполняют функции масштабного преобразования тока и напряжения.

Мгновенные значения аналоговых сигналов тока и напряжения преобразуются счетчиками электрической энергии АИИС КУЭ в цифровой код. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения мощности, вычисление активной мощности осуществляется путем интегрирования на временном интервале 20 мс мгновенных значений электрической мощности; полной мощности путем перемножения среднеквадратичных значений тока и фазного напряжения и реактивной мощности из измеренных значений активной и полной мощности. Вычисленные значения мощности

преобразуются в частоту следования импульсов телеметрии, число которых подсчитывается на интервале времени 30 минут и сохраняется во внутренних регистрах счетчика вместе с временем окончания интервала интегрирования в шкале UTC(SU).

ИВКЭ АИИС обеспечивает сбор результатов измерений, хранящихся в памяти счетчиков электрической энергии, хранение результатов измерений, передачу результатов измерений на уровень ИВК, синхронизацию шкалы времени часов счетчиков со шкалой времени UTC. ИВКЭ включает в себя контроллер сетевой индустриальный типа СИКОН С70 (Г.р. № 28822-05), выполняющий функции устройства сбора и передачи данных (УСПД), и устройство синхронизации времени типа УСВ-3 (Г.р. № 51644-12).

ИВК АИИС осуществляет сбор результатов измерений, хранящихся в базе данных УСПД, хранение результатов измерений, математическую обработку результатов измерений, ведение журналов событий, передачу результатов измерений во внешние системы, в том числе в ПАК ОАО «АТС» и смежным субъектам по протоколу SMTP (спецификация RFC 821) в формате XML 1.0, результаты измерений защищены электронной цифровой подписью. ИВК состоит из связующих компонентов и серверного оборудования. В ИВК используется программное обеспечение системы автоматизированной информационно-измерительной «Энергосфера» (Г.р. № 54813-13).

Уровни ИИК ТИ и ИВКЭ соединены между собой посредством шины интерфейса RS-485.

Уровни ИВКЭ и ИВК соединены между собой основным и резервным каналами связи. В качестве основного канала связи использована транспортная сеть ОАО «Связьтранснефть», в качестве резервного канала использованы средства спутниковой связи.

Система обеспечения единого времени работает следующим образом. Устройство синхронизации времени в составе ИВКЭ обеспечивает прием и обработки сигналов глобальной спутниковой навигационной системы, формируя шкалу времени UTC. УСПД в составе ИВКЭ обеспечивает синхронизацию собственных часов с часами устройства синхронизации времени. УСПД обеспечивает формирование команды синхронизации часов счетчиков в составе ИИК ТИ с собственными часами ежесуточно.

Таблица 1 – Перечень измерительных каналов (ИК) и их состав

№	Наимено-	Вид СИ, класс точности,			Тип и модификация (при наличии)			
ИК	вание	коэффициент преобразования,						
		№ Госреестра СИ						
31	3РУ 6 кВ,	TT	KT 0,2S,	A	ТОЛ-СЭЩ: ТОЛ-СЭЩ-10-21			
	Ввод №1		$K_{TT} = 2000/5,$	В	ТОЛ-СЭЩ: ТОЛ-СЭЩ-10-21			
			Γ.p. № 51623-12	С	ТОЛ-СЭЩ: ТОЛ-СЭЩ-10-21			
		TH	KT 0,5,	Α	ЗНОЛ: ЗНОЛП-6			
			K тн = 6000 : $\ddot{\mathbf{G}}/100$: $\ddot{\mathbf{G}}$,	В	ЗНОЛ: ЗНОЛП-6			
			Γ.p. № 46738-11	С	ЗНОЛ: ЗНОЛП-6			
		Счет-	KT 0,2S/0,5,		CЭT-4TM.03M			
		чик	Γ.p. № 36697-12					
24	3РУ 6 кВ,	TT	KT 0,2S,	Α	ТОЛ-СЭЩ: ТОЛ-СЭЩ-10-21			
Вво	Ввод №2		Ktt = 2000/5, Γ.p. № 51623-12	В	ТОЛ-СЭЩ: ТОЛ-СЭЩ-10-21			
				С	ТОЛ-СЭЩ: ТОЛ-СЭЩ-10-21			
		TH	KT 0,5,	A	ЗНОЛ: ЗНОЛП-6			
			Ктн = 6000:Ö3/100:Ö3, Г.р. № 46738-11	В	ЗНОЛ: ЗНОЛП-6			
				С	ЗНОЛ: ЗНОЛП-6			
		Счет-	KT 0,2S/0,5,	CЭT-4TM.03M				
		чик	Γ.p. № 36697-12					

Продолжение таблицы 1

№	Наимено-		, класс точности,	Тип и модификация (при наличии)				
ИК	вание		циент преобразования,					
			еестра СИ					
23	3РУ 6 кВ,	TT	KT 0,2S,	A	ТОЛ-СЭЩ: ТОЛ-СЭЩ-10-21			
	Ввод №3		$K_{TT} = 2000/5,$	В	ТОЛ-СЭЩ: ТОЛ-СЭЩ-10-21			
			Γ.p. № 51623-12	С	ТОЛ-СЭЩ: ТОЛ-СЭЩ-10-21			
		TH	KT 0,5,	A	ЗНОЛ: ЗНОЛП-6			
			$KTH = 6000: \ddot{C} / 100: \ddot{C},$	В	ЗНОЛ: ЗНОЛП-6			
			Γ.p. № 46738-11	С	ЗНОЛ: ЗНОЛП-6			
		Счет-	KT 0,2S/0,5,	СЭТ	-4TM.03M			
		чик	Γ.p. № 36697-12					
17	3РУ 6 кВ,	TT	KT 0,2S,	A	ТОЛ-СЭЩ: ТОЛ-СЭЩ-10-21			
	Ввод №4		$K_{TT} = 2000/5,$	В	ТОЛ-СЭЩ: ТОЛ-СЭЩ-10-21			
			Γ.p. № 51623-12	С	ТОЛ-СЭЩ: ТОЛ-СЭЩ-10-21			
		TH	KT 0,5,	Α	ЗНОЛ: ЗНОЛП-6			
			$KTH = 6000: \ddot{C} / 100: \ddot{C},$	В	ЗНОЛ: ЗНОЛП-6			
			Γ.p. № 46738-11	С	ЗНОЛ: ЗНОЛП-6			
		Счет-	KT 0,2S/0,5,		CЭT-4TM.03M			
		чик	Γ.p. № 36697-12		,			
61	КРУ 6 кВ,	TT	KT 0,5S,	A	ТЛО-10			
	Жил.		$K_{TT} = 100/5,$	В	ТЛО-10			
	поселок		Γ.p. № 25433-03	С	ТЛО-10			
		TH	KT 0,5,	A	ЗНОЛ.06: ЗНОЛ.06-6			
			$KTH = 6000: \ddot{O}/100: \ddot{O},$	В	ЗНОЛ.06: ЗНОЛ.06-6			
			Γ.p. № 3344-04	С	ЗНОЛ.06: ЗНОЛ.06-6			
		Счет-	KT 0,2S/0,5,	CЭT-4TM.03				
		чик	Γ.p. № 27524-04					

Программное обеспечение

В АИИС используется программное обеспечение комплекса технических средств «Энергосфера».

Идентификационные признаки метрологически значимой части программного обеспечения приведены в таблице 2.

Таблица 2 - Идентификационные признаки метрологически значимой части программного обеспечения

Идентификационные данные (признаки)	Значение		
Идентификационное наименование программного обеспечения	pso_metr.dll		
Номер версии (идентификационный номер) программного обеспечения	1.1.1.1		
Цифровой идентификатор программного обеспечения (рассчитываемый по алгоритму MD5)	CBEB6F6CA69318BED976E08A2BB7814B		

Программное обеспечение имеет уровень защиты от непреднамеренных и преднамеренных изменений в соответствии с Р 50.2.077-2014 - средний.

Метрологические и технические характеристики
Количество измерительных каналов (ИК)
Границы допускаемой основной относительной погрешности ИК и
границы допускаемой относительной погрешности ИК в рабочих
условиях применения при измерении активной и реактивной
электрической энергии при доверительной вероятности Р=0,95 приведены в таблице 3
Предел допускаемого значения поправки часов счетчиков электрической энергии
относительно шкалы времени UTC(SU) не более, с ± 5
Период измерений активной и реактивной средней электрической мощности и
приращений электрической энергии, минут
Период сбора данных со счетчиков электрической энергии, минут
Формирование XML-файла для передачи внешним системам автоматическое
Формирование базы данных с результатами измерений с указанием времени проведения
измерений и времени поступления результатов измерений в базу данных автоматическое
Глубина хранения результатов измерений в базе данных не менее, лет
Ведение журналов событий ИИК ТИ, ИВКЭ и ИВК автоматическое
Рабочие условия применения компонентов АИИС КУЭ:
температура окружающего воздуха для:
измерительных трансформаторов, °Сот минус 45 до 40;
для счетчиков, связующих компонентов, °С от 0 до 40;
для оборудования ИВК, °Сот 10 до 35;
частота сети, Гц
напряжение сети питания (относительного номинального значения U _{ном}), % от 90 до 110;
индукция внешнего магнитного поля, мТл не более 0,5.
Допускаемые значения информативных параметров:
ток, % от I _{ном}
напряжение, $\%$ от $U_{\text{ном}}$ от 90 до 110;
коэффициент мощности, сов ј
коэффициент реактивной мощности, $\sin j$

Таблица 3 - Границы допускаемой относительной погрешности ИК при измерении активной $(\delta_W^{\ A})$ и реактивной $(\delta_W^{\ P})$ электрической энергии в рабочих условиях применения и границы допускаемой относительной погрешности ИК при измерении активной электрической энергии $(\delta_{Wo}^{\ A})$ для значений тока 2, 5, 20, 100, 120 % номинального и значений коэффициента мощности 0,5, 0,8, 0,87 и 1

I, % от Іном	Коэффици-	ИК 17, 23, 24, 31			ИК 61		
	ент	$\pm \delta_W^{\ A}$,	$\pm \delta_W^{\ P}$,	$\pm \delta_{Wo}{}^A$,	$\pm \delta_{W}^{\;\;A},$	$\pm \delta_W^P$,	$\pm \delta_{Wo}^{ A}$,
IHOM	мощности	%	%	%	%	%	%
2	0,5	2,2	2,1	2,1	4,8	2,8	4,8
2	0,8	1,5	2,5	1,3	2,6	4,4	2,6
2	0,87	1,4	2,7	1,3	2,3	5,4	2,2
2	1	1,3	-	1,0	1,7	-	1,6

Продолжение таблицы 3

I, % ot	Коэффици-	ИК 17, 23, 24, 31			ИК 61		
I, % 01	ент	$\pm \delta_W^{\ A}$,	$\pm \delta_W^{\ P}$,	$\pm \delta_{Wo}^{ A}$,	$\pm \delta_W^{\ A}$,	$\pm \delta_W^P$,	$\pm \delta_{Wo}{}^A$,
IHOM	мощности	%	%	%	%	%	%
5	0,8	1,3	2,2	1,1	1,7	2,7	1,7
5	0,87	1,2	2,4	1,0	1,6	3,3	1,5
5	1	0,9	ı	0,8	1,1	ı	1,1
20	0,5	1,7	1,8	1,5	2,2	1,4	2,2
20	0,8	1,2	2,0	0,9	1,3	2,0	1,2
20	0,87	1,1	2,1	0,8	1,2	2,3	1,1
20	1	0,9	ı	0,7	0,9	ı	0,8
100,	0,5	1,7	1,8	1,5	2,2	1,3	2,2
120	0,5	1,7	1,0	1,5	۷,۷	1,3	۷,۷
100,	0,8	1,2	2,0	0,9	1,3	1,9	1,2
120	0,6	1,2	2,0	0,5	1,5	1,7	1,2
100,	0,87	1,1	2,1	0,8	1,2	2,3	1,1
120	0,07	1,1	2,1	0,0	1,4	2,3	1,1
100,	1	0,9	_	0,7	0,9	_	0,8
120	1	0,7		0,7	0,2		0,0

Знак утверждения типа

Знак утверждения типа наносится на титульный лист формуляра Г.0.0000.14026-ВСМН/ГТП-00.000-ФО Система автоматизированная информационно-измерительная коммерческого учета электроэнергии НПС «Нижнеудинская». Формуляр.

Комплектность средства измерений

Комплектность АИИС КУЭ приведена в таблице 4.

Таблица 4 – Комплектность АИИС КУЭ

Taominga 4 – Rominierinoeth Affric Ry	T	1
Наименование	Тип, модификация	Кол-во,
		шт.
Трансформаторы тока	ТОЛ-СЭЩ: ТОЛ-СЭЩ-10-21	12
Трансформаторы тока	ТЛО-10	3
Трансформаторы напряжения заземляемые	ЗНОЛ: ЗНОЛП-6	12
Трансформаторы напряжения измерительные	ЗНОЛ.06: ЗНОЛ.06-6	3
Счетчики электрической энергии	CЭT-4TM.03M	4
многофункциональные		
Счетчики электрической энергии	CЭT-4TM.03	1
многофункциональные		
Контроллер сетевой индустриальный	СИКОН С70	1
Устройство синхронизации времени	УСВ-3	1
Система автоматизированная информационно-	Г.0.0000.14026-ВСМН/ГТП-	1
измерительная коммерческого учета	00.000-ФО	
электроэнергии НПС «Нижнеудинская».		
Формуляр		
Система автоматизированная информационно-	МП-043-30007-2015	1
измерительная коммерческого учета		
электроэнергии НПС «Нижнеудинская».		
Методика поверки		

Поверка

осуществляется по документу МП-043-30007-2015 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии НПС «Нижнеудинская». Методика поверки», утвержденному Φ ГУП «СНИИМ» в апреле 2015 г.

Основное поверочное оборудование: миллитесламетр портативный ТП2-2У (Γ . р. № 16373-08), мультиметр APPA-109 (Γ . р. № 20085-11), вольтамперфазометр «Парма ВАФ-А» (Γ . р. № 22029-10), измеритель комплексных сопротивлений электрических цепей «Вымпел» (Γ . р. № 23070-05), тайм-сервер ФГУП «ВНИИФТРИ» из состава средств передачи эталонных сигналов времени и частоты ГСВЧ (поправка системных часов не более \pm 10 мкс).

Поверка измерительных компонентов АИИС КУЭ проводится в соответствии со следующими нормативными и техническими документами по поверке:

- измерительные трансформаторы тока в соответствии с ГОСТ 8.217;
- измерительные трансформаторы напряжения в соответствии с ГОСТ 8.216;
- счетчики электрической энергии СЭТ-4ТМ.03 в соответствии с методикой поверки ИЛГШ.411152.124РЭ1, утвержденной ФГУ «Нижегородский ЦСМ» 10 сентября $2004 \, \mathrm{r.}$;
- счетчики электрической энергии СЭТ-4ТМ.03М в соответствии с методикой поверки ИЛГШ.411152.145РЭ1, утвержденной ФГУ «Нижегородский ЦСМ» 04 декабря 2007 г.:
- контроллер сетевой индустриальный СИКОН С70 в соответствии с методикой поверки ВЛСТ 220.00.000И1, утвержденной ФГУП «ВНИИМС» 17 января 2005 г.;
- устройство синхронизации времени УСВ-3 в соответствии с методикой поверки ВЛСТ 240.00.000МП, утвержденной Φ ГУП «ВНИИ Φ ТРИ» 10 августа 2012 г.

Сведения о методиках (методах) измерений

Методика измерений изложена в документе «Методика измерений электрической энергии с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии НПС «Нижнеудинская» Свидетельство об аттестации методики измерений №238-01.00249-2015 от «28» апреля 2015 г.

Нормативные и технические документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии НПС «Нижнеудинская»

1. ГОСТ Р 8.596-2002. Метрологическое обеспечение измерительных систем. Основные положения.

Изготовитель

Общество с ограниченной ответственностью Управляющая компания «РусЭнергоМир» (ООО УК «РусЭнергоМир»). Адрес: 630096, Новосибирская область, Новосибирск, ул. Станционная д. 46б, офис № 22, ИНН 5404338740, тел. (383) 349-81-00, e-mail: info@rusenergomir.ru.

Испытательный центр

Федеральное государственное унитарное предприятие «Сибирский государственный ордена Трудового Красного Знамени научно-исследовательский институт метрологии» (ФГУП «СНИИМ»)

Адрес: 630004, г. Новосибирск, проспект Димитрова, д. 4., тел. (383)210-08-14, факс (383) 210-13-60. E-mail: director@sniim.ru

Аттестат аккредитации ГЦИ СИ ФГУП «СНИИМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.310556 от 14.01.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «___»____ 2015 г.