ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Комплексы измерительные телевизионные КИ-ТВМ-Э

Назначение средства измерений

Комплексы измерительные телевизионные КИ-ТВМ-Э (далее КИ-ТВМ-Э) предназначены для:

- цифрового формирования, измерений параметров телевизионных измерительных сигналов (ТВИС) и аудио измерительных сигналов (АИС);
- приема и демодуляции сигналов изображения и звукового сопровождения из радиосигналов аналогового вещательного телевидения (ABT) радиостанций I V ТВ диапазонов и частот сети кабельного ТВ (от 48,5 до 860 МГц);
- приема, демодуляции измерений параметров радиосигналов цифрового вещательного телевидения (ЦВТ) DVB-T;
- измерений параметров транспортных потоков (далее ТП) MPEG-2.

Описание средства измерений

КИ-ТВМ-Э выполнен в виде настольного персонального компьютера, в который установлены: специальная плата прецизионного ввода / вывода ТВИС (ВК-3); плата/платы тюнера DVB-T, DVB-C, DVB-S/S2; плата прецизионного ввода / вывода АИС (АК-1) и инсталлировано специализированное программное обеспечение (далее - ПО).

Принцип действия КИ-ТВМ-Э заключается в цифровом формировании аналогового ТВИС с последующим аналого-цифровым преобразованием и вычислением искажений этого ТВИС по алгоритмам, обеспечиваемым ПО. Реализовано измерение внешних радиосигналов эфирного, цифрового телевидения, принимаемых с помощью телевизионного тюнера. Для получения заявленных метрологических характеристик применяется цифровая коррекция данных для формирования ТВИС и результатов измерений ТВИС с известными параметрами.

Фотография общего вида рабочего места КИ-ТВМ-Э приведена на рисунке 1.

Место для размещения наименования СИ и знака утверждения типа находится на передней панели КИ-ТВМ-Э (рисунок 1).

Рисунок 1 - Общий вид КИ-ТВМ-Э

Места для размещения наклеек для пломбировки от несанкционированного доступа расположены на задних винтах крепления левой крышки системного блока компьютера прибора (рисунок 2).

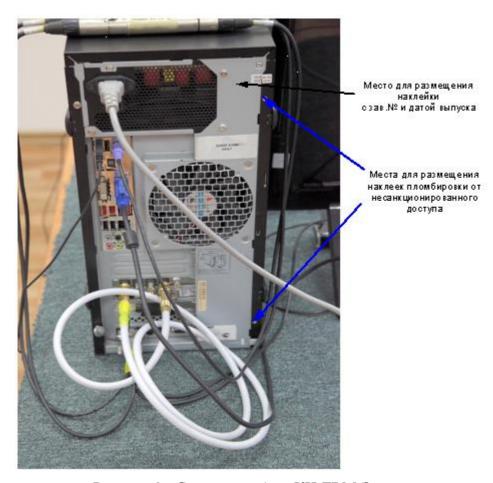


Рисунок 2 - Системный блок КИ-ТВМ-Э, вид сзади

Программное обеспечение

В состав ПО КИ-ТВМ-Э входят четыре подпрограммы:

- · подпрограмма «Анализатор ВК и АВТ», которая формирует ТВИС, обеспечивает измерения параметров ТВИС и сигналов АВТ, при помощи осциллографа позволяет наблюдать форму сигналов;
- · подпрограмма «Анализатор аудио», которая формирует АИС и обеспечивает измерения параметров сигналов, при помощи осциллографа позволяет наблюдать форму сигналов;
- · подпрограмма «Анализатор ЦВТ», которая обеспечивает измерения параметров сигналов ЦВТ DVB-T, позволяет наблюдать амплитудно-частотную характеристику (АЧХ), характеристику группового времени задержки (ГВЗ) и спектр принимаемого сигнала;
- · подпрограмма «Анализатор потока MPEG-2», которая обеспечивает измерения параметров сигналов, формирует базу данных состояний каналов мониторинга, позволяет отображать видео, воспроизводить звук и индицировать уровни звука в аудиоканале.

Таблица 1

Идентифика- ционное на- именование ПО 1 Анализатор В	Номер вер- сии ПО (идентифи- кационный код) К и АВТ:	Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификатора ПО
Generate.dll	3.1	9026766DFCC5FDEA3F6EA91BA72469E1	
Osline.dll	3.1	8952DD77C4782B376488ADC5416B6285	
Scope.dll	3.1	7AF90E0CD083FBDBB82DA61EFE5A7428	md5
Vac.dll	3.1	22B8E8BCE2A9D6064F1151CB201F104E	illas
VacAfc.dll	3.1	17E7EEE27CF5D6203464FE33647033C0	
fft.dll	3.1	13A8F2A8AABD2093B696EA090859F8C7	
2 Анализатор аз	удио:		
AK_Auto.exe	1.0	719AB7C80E846F2A4750B33874FD0CC0	
AK_Manual.e xe	1.0	D7E32475372C61AA707C178E9E429801	md5
FFT48N96.dll	1.0	AB282C425E248330525F9C091DACEE9E	
3 Анализатор Ц	(BT:		
Osdtv.dll	1.0	136B82F062D03C5D0F60DDF696C5693E	
libfftw3-3.dll	1.0	8C9E690F66D5D4FC6E94F5EDB502CBE3	md5
4 Анализатор потока MPEG-2:			
mfc_simple.ex	1.0	E22D56B76BE06F2611701E7303FC074E	md5

Защита ПО от непреднамеренных и преднамеренных изменений соответствует уровню «С» по МИ 3286-2010.

Метрологические и технические характеристики

1 КИ-ТВМ-Э обеспечивает:

1.1 Формирование элементов ТВ испытательных строк и периодических измерительных сигналов (ИС) в соответствии с ГОСТ 7845-82 и ГОСТ 18471-93 с параметрами и характеристиками, указанными в таблице 2.

Таблица 2

1 аолица 2		
	Пределы до-	
Параметры и характеристики элементов ИС	пускаемого	
	отклонения от	
	номинального	
	значения	
1 Размахи прямоугольных импульсов B2, B3, B4, B5, B6, C1, D1, D2 (со-		
ставляющая яркости), А, а также пилообразного сигнала D4, %	$\pm 0,1$	
2 Размах импульсов синхронизации, %	± 0,1	
3 Размахи сигналов цветовой синхронизации в строках D _R и D _B , %	± 0,15	
4 Размах каждой ступени сигнала D1, %	± 0,15	
5 Собственное дифференциальное усиление в сигнале D2, а также в пе-		
риодических измерительных сигналах № 3.1 и № 3.2, %	$\pm 0,1$	
6 Собственная дифференциальная фаза в сигнале D2, а также в периоди-	,	
ческих измерительных сигналах № 3.1 и № 3.2	± 0,1°	
7 Отклонение размахов ступеней сигнала G2 от номинальных значений		
относительно размаха 3-й ступени, %	± 0,1	
8 Уровень постоянной составляющей в сигнале G2 относительно размаха		
3-й ступени, %	± 0,1	
9 Неравномерность размахов синусоидальных колебаний сигнала С2, а		
также неравномерность сигнала качающейся частоты С3 относительно		
размаха опорного импульса С1, %	± 0,15	
1 1		
10 Относительная неравномерность вершин импульсов В2, В3, В4, В5,	+ 0.1	
B6, %	± 0,1	
11 1 Научина рубласар в областку флантар и статар (%)	. 0.1	
11.1 Наличие выбросов в областях фронтов и спадов, %;	$\pm 0,1$	
11.2 Отклонение длительностей фронтов и срезов импульсов, нс:	165 . 25	
B2	165 ± 2.5	
B3, B6	120 ± 2.5	
B4, B5, C1, D1, D2, D3	$233 \pm 2,5$	
12 Относительное отклонение размаха 2Т-импульса В1 от размаха им-	0.1	
пульса В2, %	± 0,1	
13 Искажение 2Т-импульса В1, %	± 0,1	
14 Различие размахов сигналов В2 и G2, а также составляющих сигналов		
яркости и цветности в сигнале F, %	± 0,15	
15 Сквозная характеристика формирования и измерения расхождения во		
времени сигналов яркости и цветности по сигналу F, нс	± 1,0	
16 Отношение размаха импульса В2 к эффективному напряжению флук-		
туационной помехи, дБ, не менее	70	
17 Отношение размаха импульса В2 к эффективному напряжению взве-		
шенной флуктуационной помехи, дБ, не менее	78	
18 Отношение размаха импульса В2 к размаху фоновой помехи, дБ, не		
менее	72	
19 Отношение размаха импульса В2 к размаху синусоидальной помехи в		
диапазоне от 0,2 до 6 МГц, дБ, не менее	72	
ПРИМЕЧАНИЕ - Метрологические характеристики обеспечиваются при	и использовании	
ТВ ИС 1.1 таблицы 1.2.2.1 Руководства по эксплуатации «Компле		
ные телевизионные КИ-ТВМ-Э САГЕ 463925 006 РЭ» и измерительного коакси-		

ные телевизионные КИ-ТВМ-Э. САГЕ.463925.006 РЭ» и измерительного коаксиального кабеля с двойной оплеткой из комплекта КИ-ТВМ-Э.

1.2 Измерения параметров сигналов и качественных показателей ТВ канала с диапазоном измерений и с пределами допускаемой погрешности измерений, указанными в таблице 3. Таблица 3

тиолици 3		
Наименование параметра сигнала или качественного	Диапазон	Пределы допускае-
показателя телевизионного канала	изме-	мой погрешности
	рений	измерений
Относительные размахи составляющих телевизионного си	гнала	
1 Относительное отклонение размаха импульса В2 от		
номинального значения, %	± 25	$\pm (0.10 + 0.01\% A\%)$
2 Относительное отклонение размаха синхронизирую-		
щего импульса от номинального значения, %	± 40	$\pm (0.150 + 0.015\% A\%)$
3 Относительное отклонение размахов сигналов цвето-		(0,100 + 0,010,11,7
вой синхронизации в строках D_R и D_B от номинального		
значения, %	± 35	± (0.150 ± 0.0151/A10
	<u> </u>	$\pm (0.150 + 0.015\% A\%)$
Нелинейные искажения	0 50	
4 Нелинейность сигнала яркости, %	от 0 до 50	$\pm (0.150 + 0.015\% A\%)$
5 Относительное отклонение каждой из пяти ступеней		
сигнала D1 от номинального значения, %	от 0 до	$\pm (0.150 + 0.015\% \text{A})$
	минус 50	
6 Дифференциальное усиление, %	± 30	$\pm (0.10 + 0.01\% \text{A})$
7 Относительное отклонение размаха цветовой подне-		
сущей на уровнях каждой из пяти ступеней сигнала		
D2, %	± 30	$\pm (0.10 + 0.01\% A\%)$
8 Дифференциальная фаза	± 50	$\pm (0.10 + 0.01 \% \text{A})^{\circ}$
9 Относительное отклонение фазы цветовой поднесущей	± 30	± (0,10 + 0,01/2A/2)
на уровнях каждой из пяти ступеней сигнала D2	± 5 0	L (0.10 + 0.011/A100
	± 50	$\pm (0.10 + 0.01 \% \text{A})^{\circ}$
10 Нелинейность сигнала цветности, %	± 50	$\pm (0.150 + 0.015 \% \text{A})$
11 Влияние сигнала цветности на сигнал яркости, %	± 30	$\pm (0.10 + 0.01\% A\%)$
Линейные искажения		
12 Амплитудно-частотная характеристика на дискрет-		
ных частотах 0,5; 1,0; 2,0; 4,0; 4,8 и 5,8 МГц, %	± 70	$\pm (0.10 + 0.01\% \text{A}\%)$
13 Относительная неравномерность вершины импульса	± 30	$\pm (0.10 + 0.01\% A\%)$
B2, %	_ = 0 0	= (0,10 : 0,01,21,4
14 Искажение среза импульса В2, %	± 30	$\pm (0.10 + 0.01\% A\%)$
15 Относительное отклонение размаха 2Т-импульса В1		= (0,10 + 0,0172172
от размаха импульса В2, %	± 50	+ (0.10 + 0.011/4.14)
16 Искажение 2Т-импульса В1 – К-параметр, %	от 0 до 10	$\pm (0.10 + 0.01\% A\%)$
		$\pm (0.10 + 0.01\% A\%)$
17 Различие усиления сигналов яркости и цветности, %	± 50	$\pm (0.10 + 0.01\% A\%)$
18 Сквозная характеристика формирования и измерения		
расхождения во времени сигналов яркости и цветности,	± 300	$\pm (1,0 + 0,1 \% A\%)$
нс		
Помехи		
19 Отношение размаха импульса В2 к эффективному на-	от 26 до	
пряжению флуктуационной помехи, дБ	66	± 0,5
20 Отношение размаха импульса В2 к эффективному на-	от 30 до	
пряжению взвешенной флуктуационной помехи, дБ	76	± 0,5
21 Отношение размаха импульса В2 к размаху фоновой	от 26 до	
помехи, дБ	66	± 0,5
полеми, дв		⊥ 0,3

Окончание таблицы 3

Наименование параметра сигнала или качественного	Диапазон	Пределы допускае-
показателя телевизионного канала	изме-	мой погрешности
	рений	измерений
22 Отношение размаха импульса В2 к размахам двух		
наибольших синусоидальных помех с частотами от	от 26 до	
0,2 до 6,0 МГц, дБ	66	$\pm 0,5$

ПРИМЕЧАНИЯ

- 1 А измеряемая величина, номинальное значение А равно нулю.
- 2 Метрологические характеристики обеспечиваются при использовании ТВ ИС 1.1 1.5 таблицы 1.2.1 Руководства по эксплуатации «Комплексы измерительные телевизионные КИ-ТВМ-Э. САГЕ.463925.006 РЭ» и измерительного коаксиального кабеля с двойной оплеткой из комплекта КИ-ТВМ-Э.
- 1.3 Измерения основных параметров и характеристик канала звукового вещания в соответствии с таблицей 4

Таблица 4

Tuomingu !		
Параметры и характеристики канала звукового	Диапазон	Пределы допускае-
вещания	измерений	мой погрешности
	_	измерений
1 AYX (DS1, DS2)	от минус 24 до	± 0,1 дБ
	плюс 6 дБ	
2 Коэффициент передачи канала (TrCf)	от минус 9 до	± 0,1 дБ
	плюс 9 дБ	
3 Защищенности от взвешенного шума (SNRw1,	от минус 40 до	
SNRw2)	минус 75 дБ	± 0,2 дБ
4 Уровень невзвешенного шума (SNR)	от минус 40 до	± 0,2 дБ
	минус 80 дБ	·
5 Защищенность от одночастотной помехи	от минус 40 до	
(DistLev)	минус 80 дБ	± 0,2 дБ
6 Погрешность восстановления частоты (dF)	от 0 до 10 %	± 0,1 %
7 Защищенность от внятной переходной помехи,	от минус 40 до	
в том числе между каналами A и B (Cross)	минус 80 дБ	± 0,2 дБ
8 Коэффициент гармоник (Hcff)	от 0,03 до 25 %	± (5 % ½A½)*
9 Коэффициент разностного тона 2-го и 3-го по-		
рядка (DT2, DT3)	от 0,03 до 10 %	± (5 % ½A½)*
10 Линейность амплитудной характеристики	от минус 10 до	
(Line)	плюс 10 дБ	± 0,05 дБ
11 Защищенность от продуктов модуляции с час-	от минус 20 до	
тотами, кратными 50 Гц (G50)	минус 70 дБ	± 0,5 дБ
12 Защищенность от шума, модулированного	от минус 20 до	
программой (PN)	минус 80 дБ	± 0,5 дБ
13 Собственный прирост уровня шума за счет	от минус 20 до	
продуктов модуляции (dPN)	минус 70 дБ	±0,5 дБ
14 Разность уровней в каналах стереопары (dL)	от 0 до 10 дБ	±0,1 дБ
15 Разность фаз между каналами A и B (dFi)	от 0 до 360°	±0,5°
16 Фазовое дрожание выходного аналогового		
сигнала (Gitter)	от 0 до 30 нс	±0,1 нс

Окончание таблицы 4

нулю.

Параметры и характеристики канала звукового	Диапазон	Пределы допускае-	
вещания	измерений	мой погрешности	
		измерений	
17 ПГИ (THD1, THD2),	от минус 70 до		
	минус 20 дБ	±0,25 дБ	
ПГИ и шум (THDN1, THDN2)	от минус 80 до		
	минус 20 дБ		
ПРИМЕЧАНИЕ - *А – измеряемая величина, номинальное значение величины А равно			

1.4 В режиме измерений по радиосигналам АВТ:

- прием и демодуляцию сигналов изображения и звукового сопровождения из радиосигналов АВТ радиостанций I - V ТВ диапазонов и частот сети кабельного ТВ (от 48,5 до 860 МГц), измерения характеристик сигналов АВТ по ГОСТ 20532-83;
- автоматические измерения и двухуровневый допусковый контроль параметров и качественных показателей сигналов изображения и звукового сопровождения.
 - 1.5 В режиме измерений по радиосигналам DVB-T ЦВТ:
- прием и демодуляцию радиосигналов ЦВТ DVB-Т в полосах радиочастот (174 230) МГц (диапазон МВ III) и (470 862) МГц (диапазон ДМВ);
- определение вида модуляции и скорости кодирования;
- построение диаграммы созвездия принимаемого сигнала;
- анализ сигналов I / Q с измерениями относительной ошибки модуляции (MER), величины вектора ошибки (EVM), систематической ошибки положения точек созвездия (STE), дисбаланса амплитуды (AI), квадратурной ошибки (QE), фазового джиттера (PJ), подавления несущей (CS), неравномерности АЧХ (AFCnu) и ГВЗ(GTD), уровня битовых ошибок (BER) с пределами допускаемых погрешностей в соответствии с таблицей 5.

Таблина 5

Наиме- нование пара-	Диапазон измерений, вид модуляции (созвездия)	Пределы допускаемой по- грешности измерений
метра	24 40 5 0000 400 100 400 100	(0.007 0.010 (40.35)) 7
3 (55)		± (0,005 + 0,010 ⋅ (48 - М)) дБ
MER	св. 18 до 24 дБ, QPSK, 16QAM, 64QAM	± (0,30 ±0,15·(24 - M)) дБ
EVM	(6 - 0,4) % при MER от 24 до 48 дБ включ., QPSK,	$\pm (0.005 + 0.005 \cdot (48 - M)) \%$
	16QAM	
	(10 - 6) % при MER св. 18 до 24 дБ, QPSK,	± (0,20 ±0,05·(24 - M)) %
	16QAM	
	(5 - 0,4) % при МЕК св. 24 до 48 дБ включ.,	$\pm (0.005 + 0.020 \cdot (48 - M)) \%$
	64QAM	
STE	(0 - 37,5) % при МЕК от 24 до 48 дБ включ.,	$\pm (0.005 + 0.005 \cdot (48 - M)) \%$
	QPSK	
	(0 - 37,5) % при МЕР св. 18 до 24 дБ, QPSK	$\pm (0.15 \pm 0.05 \cdot (24 - M)) \%$
	(0 - 20) % при MER св. 30 до 48 дБ включ.,	
	16QAM;	$\pm (0.005 + 0.010 \cdot (48 - M)) \%$
	(0 - 5) % при MER св. 24 до 48 дБ включ.,	
	16QAM;	
	(0 - 5) % при MER св. 30 до 48 дБ включ.,	
	64QAM	

Окончание таблицы 5

Наиме-		Пределы допускаемой по-	
нование	Диапазон измерений, вид модуляции	грешности измерений	
пара-	(созвездия)		
метра			
AI	$\pm 5 $ % при MER от 24 до 48 дБ включ., QPSK	$\pm (0.005 + 0.002 \cdot (48 - M)) \%$	
	± 5 % при MER св. 18 до 24 дБ, QPSK	$\pm (0.60 \pm 0.05 \cdot (24 - M)) \%$	
	± 5 % при MER св. 24 до 48 дБ включ., 16QAM	$\pm (0.005 + 0.007 \cdot (48 - M)) \%$	
	± 5 % при MER св. 30 до 48 дБ включ., 64QAM	$\pm (0.005 + 0.015 \cdot (48 - M)) \%$	
QE	\pm 5° при MER от 24 до 48 дБ включ., QPSK	$\pm (0.005 + 0.005 \cdot (48 - M))^{\circ}$	
	± 5° при MER св. 18 до 24 дБ, QPSK	$\pm (0.15 \pm 0.05 \cdot (24 - M)) \%$	
	± 5° при MER св. 24 до 48 дБ включ., 16QAM	$\pm (0.005 + 0.007 \cdot (48 - M))^{\circ}$	
	± 5° при MER св. 30 до 48 дБ включ., 64QAM	$\pm (0.005 + 0.005 \cdot (48 - M))^{\circ}$	
PJ	(0 – 10)° при MER св. 30 до 48 дБ включ., QPSK	$\pm (0.005 + 0.002 \cdot (48 - M))^{\circ}$	
	$(0-5)^{\circ}$ при MER св. 42 до 48 дБ включ., 16QAM	$\pm (0.005 + 0.035 \cdot (48 - M))^{\circ}$	
	и 64QAM		
CS	(60 – 0) дБ при MER св. 18 до 48 дБ включ.,	$\pm (0.010 + 0.025 \cdot (48 - M))$ дБ	
	QPSK		
	(60 – 0) дБ при MER св. 30 до 48 дБ включ.,		
	16 QAM и 64QAM		
AFCnu	± 6 дБ при MER св. 18 до 48 дБ включ., QPSK	$\pm (0.01 + 0.01 \cdot (48 - M))$ дБ	
	± 6 дБ при MER св. 30 до 48 дБ включ., 16QAM и		
	64QAM		
ПРИМЕЧАНИЕ - M - измеренное значение MER в выбранном диапазоне измерений.			

Диапазоны измерений, пределы допускаемой погрешности измерений параметров BER сигналов ЦВТ DVB-T приведены в таблице 6.

Таблица 6

Наименование параметра	Диапазон измерений	Пределы допускаемой по- грешности измерений
1 BER до Витерби	от 10 ⁻² до 10 ⁻⁸	
2 BER до Рида-Соломона	от 10 ⁻³ до 10 ⁻⁸	±10 %
3 BER после Рида-Соломона	от 10 ⁻³ до 10 ⁻⁸	

1.6 В режиме измерений в ТП MPEG-2 измерения параметров первого, второго и третьего приоритетов ТП в соответствии с ETSI TR 101 290 в реальном масштабе времени (мониторинг), в том числе проверку корректности ТП, просмотр системной информации и состава ТП, измерения скорости ТП в диапазоне скоростей входного ТП:

- для сигналов DVB-T, Мбит/с
 для сигналов DVB-S (S2), Мбит/с
 от 4,976 до 31,670;
 для сигналов DVB-S (S2), Мбит/с

2 Технические характеристики

Габаритные размеры (длина × ширина × высота), мм, не более	500x210x500.
Напряжение питания от сети переменного тока с частотой (50±0,5) Гц, В	$(220 \pm 4,4)$.
Потребляемая мощность, В-А, не более	600.
Масса, кг, не более	15.

Продолжительность непрерывной работы, ч	24.
Время установления рабочего режима, мин, не более	
Средняя наработка на отказ, ч, не менее	
Средний срок службы, лет, не менее	10.
Рабочие условия применения:	

- температура окружающего воздуха от 282 до 308 K (от 10 до 35 °C),
- -относительная влажность воздуха не более 80 % при температуре 298 К (25 °C),
- атмосферное давление от 84 до 106,7 кПа.

Нормальные условия применения:

- температура окружающего воздуха от 288 до 298 К (от 15 до 25 °C);
- относительная влажность воздуха от 30 до 80 %,
- атмосферное давление от 84 до 106 кПа.

КИ-ТВМ-Э удовлетворяют требованиям безопасности СИ по ГОСТ 22261, р.5.

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации типографским способом и на переднюю панель корпуса системного блока компьютера КИ-ТВМ-Э любым технологическим способом, обеспечивающим чёткое изображение этого знака, а также сохраняемость изображения знака в течение установленного срока службы КИ-ТВМ-Э.

Комплектность средства измерений

Комплект поставки КИ-ТВМ-Э приведен в таблице 7.

Таблица 7

Науманаранна Науманаранна	Обозначение	Количество	Примачания
Наименование	Обозначение	Количество	Примечание
1 Комплекс измерительный те-			
левизионный КИ-ТВМ-Э (с кла-			
виатурой и манипулятором типа			
«мышь»)	САГЕ.463925.006	1	-
2 ПО КИ-ТВМ-Э	САГЕ.463925.006ПО	1	DVD
3 DVD с дистрибутивом ОС			Указывается в дого-
Windows	-	1	воре поставки
4 Комплексы измерительные те-			
левизионные КИ-ТВМ-Э. Руко-			
водство по эксплуатации	САГЕ.463925.006РЭ	1	-
5 Инструкция. Комплексы изме-			
рительные телевизионные			
КИ-ТВМ-Э. Методика поверки.	САГЕ.463925.006МП	1	-
6 Аттенюатор 20 дБ НАТ-20-75+	-	1	-
7 Кабель измерительный коак-			
сиальный с двойным экраниро-	-	1	-
ванием			
8 Комплект кабелей	САГЕ.463925.006.04	1 комплект	В соответствии с СА-
			ГЕ.463925.006СП
9. Комплексы измерительные те-			
левизионные КИ-ТВМ-Э. Паспорт	САГЕ.463925.006ПС	1	

Поверка

Поверка производится в соответствии с документом САГЕ.463925.006МП «Инструкция. Комплексы измерительные телевизионные КИ-ТВМ-Э. Методика поверки», утвержденным руководителем ФГУП «ВНИИФТРИ» 08.09.2014 г.

Основные средства поверки:

- мультиметр 3458A, рег. № 25900-03, диапазон измерений напряжения постоянного тока от 0,1 до 10 B, пределы допускаемой абсолютной погрешности: \pm (2,5·10⁻⁶ D + 3·10⁻⁶ E) в диапазоне от 0 до 10 мB, \pm (1,5·10⁻⁶ D + 0,3·10⁻⁶ E) в диапазоне от 10 мB до 1 B, \pm (0,5·10⁻⁶ D + 0,05·10⁻⁶ E) в диапазоне от 1 до 10 B, где D показания прибора, E значение верхнего предела поддиапазона измерений; диапазон измерений частоты от 40 Гц до 10 МГц, пределы допускаемой абсолютной погрешности \pm 1·10⁻⁴ D;
- Термопреобразователь Ballantine 1394A-1 (0,32 − 1,33) B, 10 МГц, рег. № 53369-13, основная погрешность 0,12%.
- осциллограф цифровой запоминающий WavePro 735Zi, per. № 40233-08, полоса пропускания 3,5 ГГц; пределы допускаемой относительной погрешности коэффициента отклонения \pm 1,5 %; пределы допускаемой абсолютной погрешности смещения \pm (1,5 % от полной шкалы + 1 % от установленного значения + 1 мВ);
- генератор сигналов Agilent N5182A, рег. № 37154-08, диапазон частот от 0,1 до 3000 МГц; пределы допускаемой абсолютной погрешности установки частоты \pm 0,1 Гц;
- генератор сигналов высокочастотный Γ 4-158, рег. № 8777-13, диапазон частот от 0,01 до 100 М Γ ц; пределы допускаемой основной погрешности: установки частоты \pm 0,001 %; установки выходного напряжения \pm 0,5 д Γ 6 (до 50 М Γ 4); \pm 1 д Γ 6 (свыше 50 М Γ 4);
- анализатор спектра N9340B, рег. № 38849-08, диапазон частот от 100 к Γ ц до 3 Γ Γ ц; пределы допускаемой основной абсолютной погрешности измерений уровня \pm 1,5 д Γ ;
- измеритель КСВН и ослабления панорамный РК2-47, рег. № 5465-76, диапазон частот от 20 до 1250 МГц; диапазон измерений КСВН от 1,05 до 5; пределы допускаемой основной погрешности измерений КСВН \pm 5 %.

Сведения о методиках (методах) измерений

- 1 ГОСТ 7845-92. Система вещательного телевидения. Основные параметры. Методы измерений.
- 2 ГОСТ 11515-91. Каналы и тракты звукового вещания. Основные параметры качества. Методы измерений.
- 3 ГОСТ 19871-83. Каналы изображения аппаратно-студийного комплекса и передвижной телевизионной станции вещательного телевидения. Основные параметры и методы измерений.
- 4 ГОСТ Р 52722-2007. Каналы передачи цифровых телевизионных сигналов аппаратностудийного комплекса и передвижной телевизионной станции цифрового вещательного телевидения. Основные параметры и методы измерений.
- 5 ГОСТ 19463-89. Магистральные каналы изображения радиорелейных и спутниковых систем передачи. Основные параметры и методы измерений.
- 6 ГОСТ 20532-83. Радиопередатчики телевизионные 1-V диапазонов. Основные параметры, технические требования и методы измерений.
- 7 Комплексы измерительные телевизионные КИ-ТВМ-Э. Руководство по эксплуатации КИ-ТВМ-Э. САГЕ.463925.006 РЭ.

Нормативные документы, устанавливающие требования к комплексам измерительным телевизионным КИ-ТВМ-Э

- 1 ГОСТ 7845-92. Система вещательного телевидения. Основные параметры. Методы измерений
- 2 ГОСТ 18471-83. Тракт передачи изображения вещательного телевидения. Звенья тракта и измерительные сигналы

- 3 ГОСТ 11515-91. Каналы и тракты звукового вещания. Основные параметры качества. Методы измерений
- 4 ГОСТ 19871-83. Каналы изображения аппаратно-студийного комплекса и передвижной телевизионной станции вещательного телевидения. Основные параметры и методы измерений
- 5 ГОСТ Р 52592-2006. Тракт передачи сигналов цифрового вещательного телевидения. Звенья тракта и измерительные сигналы. Общие требования.
- 6 ГОСТ Р 52593-2006. Система кабельного цифрового телевизионного вещания. Методы канального кодирования, мультиплексирования и модуляции.
- 7 ГОСТ 19463-89. Магистральные каналы изображения радиорелейных и спутниковых систем передачи. Основные параметры и методы измерений.
- 8 ГОСТ 20532-83. Радиопередатчики телевизионные 1-V диапазонов. Основные параметры, технические требования и методы измерений.
- 9 Комплексы измерительные телевизионные КИ-ТВМ-Э. Технические условия. СА-ГЕ.463925.006ТУ.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление мероприятий государственного контроля (надзора).

Выполнение работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям.

Изготовитель

Общество с ограниченной ответственностью «Научно-производственная фирма «САД-КОМ» (ООО «НПФ «САД-КОМ»).

Юридический (почтовый) адрес: 105264, г. Москва, 7-ая Парковая ул., д. 24 а. Тел./факс (495) 748-18-63, e-mail: dvr@sad-com.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений» (ФГУП «ВНИИФТРИ»).

Юридический адрес: 141570, Московская область, Солнечногорский район, городское поселение Менделеево.

Почтовый адрес: 141570, Московская обл., Солнечногорский р-н, п/о Менделеево, Тел. (495) 526-63-00, факс (495) 944-52-68, e-mail: director@vniiftri.ru

Аттестат аккредитации $\Phi \Gamma Y \Pi$ «ВНИИФТРИ» по проведению испытаний средств измерений в целях утверждения типа № 30002-13 от 07.10.2013 г.

Заместитель				
Руководителя Федерального				
агентства по техническому				
регулированию и метрологии				С.С. Голубев
	М.п.	«	»	2015 г.