ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Преобразователи термоэлектрические TC044 исполнения A3GB24091

Назначение средства измерений

Преобразователи термоэлектрические TC044 исполнения A3GB24091 (далее по тексту – термопреобразователи или ТП) предназначены для измерения температуры внутри упорного подшипника со стороны генератора на OAO «Мосэнерго» филиал ТЭЦ-20.

Описание средства измерений

Принцип работы термопреобразователей основан на термоэлектрическом эффекте - генерировании термоэлектродвижущей силы, возникающей из-за разности температур между двумя соединениями различных металлов или сплавов, образующих часть одной и той же цепи.

Термопреобразователи изготовляются на основе термопарного кабеля и состоят из измерительной вставки с двумя чувствительными элементами – термопарой (с заземленными рабочими спаями с минеральной (MgO) изоляцией термоэлектродов), кабеля с удлинительными проводами и монтажной головки.

Чертеж общего вида преобразователя представлен на рисунке 1.

Рис. 1. Внешний вид преобразователя термоэлектрического TC044 исполнения A3GB24091.

Метрологические и технические характеристики

Рабочий диапазон измеряемых температур, пределы допускаемых отклонений ТЭДС от НСХ ТП по ГОСТ Р 8.585-2001 (МЭК 60584-2) в температурном эквиваленте приведены в таблице 1.

Таблица 1.

Условное	Класс	Рабочий диапазон измеряемых	Пределы допускаемых отклонений
обозначение НСХ	допуска	температур, °С	ТЭДС от НСХ, °С
К	2	от 0 до 200	± 2,5

Длина удлинительных проводов, мм

Длина монтажной части ТП, мм

Диаметр монтажной части измерительной вставки ТП, мм

3лектрическое сопротивление изоляции ТП при температуре (плюс 25±10) °C и относительной влажности воздуха от 30 до 80%, МОм (при 100 В), не менее

100
Рабочие условия эксплуатации ТП:

- температура окружающей среды, °С

от плюс 5 до плюс 50

- относительная влажность воздуха, %, не более

до 98 (при плюс 35 °C)

Знак утверждения типа

Знак утверждения типа наносится на титульный лист паспорта (в правом верхнем углу) методом штемпелевания.

Комплектность средства измерений

Преобразователь термоэлектрический Паспорт

4 шт.

4 экз.

Поверка

осуществляется по ГОСТ 8.338-2002 «ГСИ. Преобразователи термоэлектрические. Методика поверки».

Преобразователи термоэлектрические TC044 исполнения A3GB24091 подлежат только первичной поверки при вводе в эксплуатацию.

Основные средства поверки:

- термометр электронный лабораторный «ЛТ-300», диапазон измеряемых температур от минус 50 до плюс 300 °C, $\Pi\Gamma$: ± 0.05 °C (-50...+199,99 °C), ± 0.2 °C (в остальном диапазоне);
- термостаты переливные прецизионные ТПП-1 модели ТПП-1.0, ТПП-1.1 с общим диапазоном воспроизводимых температур от минус 40 до плюс 300 °C и нестабильностью поддержания заданной температуры $\pm (0,004...0,02)$ °C.
- калибратор температуры серии RTC-R модели RTC-157B с STS, диапазон воспроизводимых температур от минус 45 до плюс 157 °C, пределы допускаемой абсолютной погрешности воспроизведения заданной температуры $\pm (0,04...0,10)$ °C, нестабильность поддержания заданной температуры: $\pm 0,005$ °C;
- калибратор температуры серии ATC-R модели ATC-650B, диапазон воспроизводимых температур от плюс 33 до плюс 650 °C, пределы допускаемой абсолютной погрешности воспроизведения заданной температуры ± 0.39 °C (по внутреннему термометру), нестабильность поддержания заданной температуры: ± 0.02 °C.

Примечания: при поверке допускается применение других средств измерений и вспомогательного оборудования, удовлетворяющих по точности и техническим характеристикам требованиям ГОСТ 8.338-2002.

Сведения о методиках (методах) измерений

приведены в соответствующем разделе паспорта на преобразователи термоэлектрические поверхностные TC044 исполнения A3GB24077.

Нормативные и технические документы, устанавливающие требования к преобразователям термоэлектрическим TC044 исполнения A3GB24091

ГОСТ 6616-94 Преобразователи термоэлектрические. Общие технические условия.

ГОСТ Р 8.585-2001 ГСИ. Термопары. Номинальные статические характеристики преобразования.

ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия.

Международный стандарт МЭК 1515-95. Термопары кабельного типа (с минеральной изоляцией).

Международный стандарт МЭК 60584-1. Термопары. Часть 1. Градуировочные таблицы.

Международный стандарт МЭК 60584-2. Термопары. Часть 2. Допуски.

ГОСТ 8.558-2009. ГСИ. Государственная поверочная схема для средств измерений температуры.

ГОСТ 8.338-2002 ГСИ. Преобразователи термоэлектрические. Методика поверки.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление производственного контроля за соблюдением установленных законодательством Российской Федерации требований промышленной безопасности к эксплуатации опасного производственного объекта на территории ОАО «Мосэнерго» филиал ТЭЦ-20 (г. Москва).

«_____»

2015 г.

Изготовитель

Фирма «Waukesha Bearings», Великобритания 53-55 The Broadway, Joel Street Northwood, HA6 1NZ UK Tel. 01923 845100

Fax. 01923 845160

Email: sales@waukbearing.com

Заявитель

ООО «МРЭС», Москва

Адрес: 121059, г. Москва, ул. Брянская, д. 5

Тел.: (499) 550-08-99.

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д. 46

Тел./факс: (495) 437-55-77/437-56-66 E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств

измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель	
Руководителя Федерального	
агентства по техническому	
регулированию и метрологии	Ф.В. Булыгин

М.п.