ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Установки многофункциональные измерительные СМС 353

Назначение средства измерений

Установки многофункциональные измерительные СМС 353 (далее – установки) предназначены для

воспроизведения напряжения и силы переменного и постоянного токов; воспроизведения частоты;

воспроизведения фазового угла.

Описание средства измерений

Установки применяются при пуско-наладочных работах и комплексном техническом обслуживании оборудования электрических подстанций.

Принцип действия установок заключается в формировании испытательных и управляющих сигналов с заданными параметрами и измерения их величины на входе и выходе проверяемого оборудования. Сигналы преобразуются в цифровую форму с помощью АЦП, обрабатываются по математическим алгоритмам и результаты измерений отображаются на графическом ЖК-дисплее внешнего ПК.

Испытательные сигналы напряжения и силы постоянного и переменного однофазных и многофазных токов в установках СМС формируются генераторами, построенными на 16-разрядных цифроаналоговых преобразователях и цифровых сигнальных процессорах, что позволяет получать высокую точность во всем рабочем диапазоне воспроизводимых амплитуд, частот и фаз.

Установки СМС 353 применяются в трехфазных сетях и содержат три генератора напряжения и три генератора тока. Также имеется четвертый независимый выход по напряжению, используемый для синхронизации или имитации остаточного напряжения.

Все генераторы установок имеют независимое непрерывное регулирование без переключения диапазонов по величине, частоте и фазе сигнала, защищены от перегрузки, короткого замыкания, перегрева, высоковольтных выбросов при переходных процессах в испытываемом оборудовании. Группы выходов по напряжению, по току гальванически изолированы друг от друга и источника питания.

Установки не имеют собственных органов управления и индикации и управляются с помощью внешнего ПК через параллельный порт, USB порт или порт Ethernet.

Установки СМС 353 могут оснащаться устройством СМСоntrol, которое представляет собой внешнюю панель управления и позволяет обходиться без внешнего ПК. Устройство выпускается в двух модификациях: СМСоntrol P- для испытания устройств защиты и измерения, СМСontrol R- для испытаний реклоузеров и автоматических секционных разъединителей.

Конструктивно установки СМС 353 выполнены как переносные приборы в металлических корпусах с поворотной ручкой.

На лицевой панели расположены основные выходы, входы и выключатель питания, на задней стенке - интерфейсные разъемы и гнезда дополнительных сигналов.

Для предотвращения несанкционированного доступа к внутренним частям винты крепления корпуса установок пломбируются специальными наклейками, разрушающимися при вскрытии корпуса.

Питание установок осуществляется от однофазной цепи переменного тока.



Рис. 2 Установка СМС 353 с устройством СМСontrol

Программное обеспечение

Встроенное ПО реализовано аппаратно и является метрологически значимым. Метрологические характеристики приборов нормированы с учетом влияния встроенного ПО. Микропрограмма заносится в программируемое постоянное запоминающее устройство (ППЗУ) приборов предприятием-изготовителем и недоступна для потребителя. Встроенное ПО СИ может быть установлено или переустановлено только на заводе-изготовителе с использованием специальных программно-технических устройств.

Таблица 1 – Характеристики программного обеспечения (ПО)

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	отсутствует
Номер версии (идентификационный номер ПО)	отсутствует
Цифровой идентификатор ПО	отсутствует
Другие идентификационные данные (если имеются)	отсутствует

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений – «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Частота напряжения и силы переменного тока от 10 до 1000 Гц.

Таблица 2 - Основные метрологические характеристики установок СМС 353 при

воспроизведении напряжения постоянного и переменного тока

Вид напряжения	Предел	Пределы допускаемой	Мощность
	воспроизведения, В	абсолютной погрешности	
		воспроизведения, В	
Переменного тока 4-фазное	300	$\pm (8.10^{-4} \cdot \text{UB.} + 2.10^{-4} \cdot \text{U\pi.})$	50 B⋅A
Переменного тока 3-фазное	300	$\pm (8.10^{-4} \cdot \text{UB.} + 2.10^{-4} \cdot \text{U} \text{II.})$	85 B⋅A
Переменного тока 1-фазное	600	$\pm (8.10^{-4} \cdot \text{UB.} + 2.10^{-4} \cdot \text{U} \text{II.})$	250 B·A
Постоянного тока	300	$\pm (8.10^{-4} \cdot \text{UB.} + 2.10^{-4} \cdot \text{Um.})$	360 Вт

Примечание: Uв. – воспроизводимое значение напряжения, В;

Uп. – предел воспроизведения напряжения, B.

Таблица 3 – Основные метрологические характеристики установок СМС 353 при

воспроизведении силы постоянного и переменного тока

воспроизведении силы постоянного и переменного тока			
Вид тока	Предел	Пределы допускаемой	Мощность
	воспроизведения, А	абсолютной погрешности	
		воспроизведения, А	
Переменный 3-фазный	32	$\pm (15.10^{-4} \cdot \text{IB.} + 5.10^{-4} \cdot \text{Im.})$	250 B·A
Переменный 1-фазный	6.1	$\pm (15.10^{-4} \cdot \text{IB.} + 5.10^{-4} \cdot \text{Im.})$	530 B⋅A
(группы А и В параллельно)	64	$\pm (13^{\circ}10^{\circ}18. \pm 3^{\circ}10^{\circ}111.)$	330 B·A

Вид тока	Предел	Пределы допускаемой	Мощность
	воспроизведения, А	абсолютной погрешности	
		воспроизведения, А	
Постоянный	90	$\pm (15.10^{-4} \cdot \text{IB.} + 5.10^{-4} \cdot \text{Im.})$	500 Вт
(группы А и В параллельно)	90	$\pm (13 10 \text{ is.} \pm 3 10 \text{ iii.})$	300 BT

Примечание: Ів. – воспроизводимое значение силы тока, А; Іп. – предел воспроизведения силы тока, А; температурный коэффициент 0,0025 %/°С.

Таблица 4 – Основные метрологические характеристики установок СМС 353 при

воспроизведении напряжения постоянного тока по дополнительному выходу

Величина	Предел	Пределы допускаемой	
	воспроизведения, В	абсолютной погрешности	
		воспроизведения, В	
Напряжение постоянного	264	± 0,05·U _B .	
тока	204	± 0,03 СВ.	

Примечание: Uв. – воспроизводимое значение напряжения, В.

Таблица 5 – Основные метрологические характеристики установок СМС 353 при

воспроизведении частоты и фазового угла

Величина	Диапазон воспроизведения	Пределы допускаемой абсолютной погрешности
		воспроизведения
Частота синусоидального сигнала	От 10 до 1000 Гц	± 5·10 ⁻⁷ Гц
Фазовый угол	± 360 градусов	± 0,2 ¹⁾ градуса

Примечание: 1) – погрешность нормирована для частоты 50/60 Гц.

Таблица 6 – Основные технические характеристики установок СМС 353

тиолици о основные техни неские характеристики установок съте 353		
Характеристика	Значение	
Напряжение питания, В	От 100 до 240	
Частота напряжения питания, Гц	От 45 до 65	
Габаритные размеры (ширина×высота×глубина), мм	343×145×390	
Масса, кг	13,3	
Рабочие условия применения:		
- температура окружающего воздуха, °С	от 0 до плюс 50	
- относительная влажность воздуха, %	до 95	

Знак утверждения типа

наносится методом трафаретной печати со слоем защитного покрытия на переднюю панель установок и типографским способом на титульный лист руководства по эксплуатации.

Комплектность средства измерений

Таблица 7 – Комплектность

Наименование	Количество	Примечание
Установка СМС 353	1 шт.	
Кабель для соединения с ПК	1 шт.	
Комплект соединительных проводов	1 шт.	
Сумка для переноски	1 шт.	
ПО Test Universe	1 шт.	Ha DVD
Руководство по эксплуатации	1 экз.	
Методика поверки	1 экз.	

Поверка

осуществляется по документу МП 46291-15 «Установки многофункциональные измерительные СМС 353. Методика поверки», утвержденному Φ ГУП «ВНИИМС» в мае 2015 г.

Средства поверки: шунт токовый АКИП-7501 (Госреестр № 49121-12); мультиметр 3458А (Госреестр № 25900-03); измеритель многофункциональный характеристик переменного тока РЕСУРС-UF2-ПТ (Госреестр № 29470-05); частотомер универсальный CNT-90XL (Госреестр № 41567-09).

Сведения о методиках (методах) измерений

приведены в руководстве по эксплуатации.

Нормативные и технические документы, устанавливающие требования к установкам многофункциональным измерительным СМС 353

- 1. ГОСТ 22261-94 «Средства измерений электрических и магнитных величин». Общие технические условия.
- 2. ГОСТ 14014-91 «Приборы и преобразователи измерительные цифровые напряжения, тока, сопротивления». Общие технические требования и методы испытаний.
- 3. ГОСТ Р 8.648-2008 ГСИ. Государственная поверочная схема для средств измерений переменного электрического напряжения до 1000 В в диапазоне частот от $1\cdot10^{-2}$ $-2\cdot10^9$ Гп.
- 4. ГОСТ 8.027-2001 ГСИ. Государственная поверочная схема для средств измерений постоянного электрического напряжения и электродвижущей силы.
- 5. МИ 1940-88 ГСИ. Государственная поверочная схема для средств измерений силы переменного электрического тока $1\cdot 10^{-8} 25$ А в диапазоне частот $20 1\cdot 10^{6}$ Гц.
- 6. ГОСТ 8.022-91 ГСИ. Государственный первичный эталон и государственная поверочная схема для средств измерений силы постоянного электрического тока в диапазоне от $1\cdot 10^{-16}$ до 30 A.
 - 7. Техническая документация фирмы «OMICRON electronics GmbH», Австрия.

Изготовитель

Фирма «OMICRON electronics GmbH», Австрия.

Адрес: Oberes Ried 1, 6833 Klaus, Austria.

Тел.: +43-5523-507-0; Факс: +43-5523-507-999.

Web-сайт: http://www.omicron.at

Заявитель

ООО НПП «ЭКРА», г. Чебоксары.

Адрес: 428003, Чувашская Республика, г. Чебоксары, пр. И. Яковлева, д. 3.

Тел.: (8352) 22-01-10; Факс: (8352) 22-01-10.

Web-сайт: http://www.ekra.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»).

Адрес: 119361, г. Москва, ул. Озерная, д. 46.

Тел./факс: (495) 437-55-77 / 437-56-66. E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального Агентства по техническому регулированию и метрологии

С.С. Голубев

М.П. «____»_____2015 г.