Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологии им. Д.И. Менделеева» (ФГУП «ВНИИМ им. Д.И. Менделеева»)

СОГЛАСОВАНО

И.о. генерального директора ФГУП «ВНИИМ им. Д. И. Менделеева»

> А.Н. Пронин 12 2020 г.

Государственная система обеспечения единства измерений

АНАЛИЗАТОРЫ РТУТИ ЛАБОРАТОРНЫЕ РА-915Лаб

Методика поверки МП-243-0007-2020

Руководителя отдела Государственных эталонов в области органического и неорганического анализа ФГУП «ВНИИМ им. Д. И. Менделеева»

А.И. Крылов

Руководитель лаборатории неорганического анализа

leelly И.Б. Максакова

Санкт-Петербург 2020

общие положения

Настоящая методика поверки распространяется на анализаторы ртути лабораторные РА-915Лаб (далее - анализаторы) и устанавливает методы их первичной поверки (после ввода в эксплуатацию или после ремонта) и периодической поверки в процессе эксплуатации. Поверка обеспечит прослеживаемость анализатора к Государственному первичному эталону единицы массовой (молярной) доли и массовой (молярной) концентрации компонентов в жидких и твердых веществах и материалах на основе кулонометрии ГЭТ 176-2013.

Метод, обеспечивающие реализацию методики поверки: прямое измерение величины, воспроизводимой мерой или измеряемой средством измерений (далее - СИ), подвергаемым поверке.

Примечания:

- 1. При пользовании настоящей методикой поверки целесообразно проверить действие ссылочных документов по соответствующему указателю стандартов, составленному по состоянию на 1 января текущего года и по соответствующим информационным указателям, опубликованным в текущем году.
- 2. Если ссылочный документ заменен (изменен), то при пользовании настоящей методикой следует руководствоваться заменяющим (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

1 ПЕРЕЧЕНЬ ОПЕРАЦИЙ ПОВЕРКИ СРЕДСТВА ИЗМЕРЕНИЙ

При проведении поверки выполняют операции, указанные в таблице 1. Таблица 1

		Проведени	е операций
Наименование операции	Номер пункта методики	Первич- ная по- верка	Периоди- ческая по- верка
Внешний осмотр	6	Да	Да
Опробование	7.2	Да	Да
Проверка соответствия программного обеспечения	8.1	Да	Да
Определение метрологических характеристик анализаторов	8.2	Да	Да

При получении отрицательных результатов по одному из пунктов поверка прекращается.

2 ТРЕБОВАНИЯ К УСЛОВИЯМ ПРОВЕДЕНИЯ ПОВЕРКИ

При проведении поверки должны соблюдаться следующие условия:

- температура окружающей среды (20 ± 5) °C;
- относительная влажность воздуха не более 80 %;
- атмосферное давление от 84 до 106 кПа.

Допускается участие в поверке операторов, обслуживающих анализатор.

3 ТРЕБОВАНИЯ К СПЕЦИАЛИСТАМ, ОСУЩЕСТВЛЯЮЩИМ ПОВЕРКУ

К проведению поверки допускаются лица, соответствующие требованиям ГОСТ Р 56069-2018, ознакомившиеся с руководством по эксплуатации поверяемого анализатора и эталонных средств измерений и прошедшие инструктаж по технике безопасности. При проведении поверки специалисты должны соблюдать требования Правил по охране

труда при использовании отдельных видов химических веществ и материалов, при химической чистке, стирке, обеззараживании и дезактивации, утвержденных Приказом Министерства труда и социального развития Российской Федерации от 27 ноября 2020 г. № 834н, а также требования техники безопасности при работе с реактивами по ГОСТ 12.1.007-76 и требования по электробезопасности при работе с электроустановками по ГОСТ 12.1.019-79.

4 МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К СРЕДСТВАМ ПОВЕРКИ

4.1 При проведении поверки должны применяться эталоны, стандартные образцы, вспомогательные устройства, реактивы и материалы, указанные в таблице 2.

Таблица 2

Номер пункта ме- тодики	Наименование и тип (условное обозначение) основного или вспомога- тельного средства поверки; обозначение нормативного документа, ре- гламентирующего технические требования, и (или)метрологические и основные технические характеристики средства поверки
7, 8.2	Термометр лабораторный ТЛ-4, ГОСТ 28498-90, диапазон измерений (0-50)°С, цена деления 0,5 °С Психрометр аспирационный М–34-М, ТУ 52.07(ГРПИ 405.132.001)-92, диапазон измерений относительной влажности 10 - 100 % Барометр-анероид метеорологический БАММ-1, ТУ 25-11.1513-79
8.2	Дозатор пипеточный одноканальный с переменным объемом дозирования (20 200) мкл, предел допускаемого отклонения среднего арифметического значения фактической дозы от номинального ± (2,5 0,6) %, предел относительного среднего квадратического отклонения фактической дозы (0,8 0,3) % Уголь активированный, размер частиц 0,10,4 мм. Перед использованием активированный уголь должен быть проверен на чистоту и при необходимости очищен или заменен (см. Приложение А). Весы неавтоматического действия с пределами допускаемой абсолютной погрешности не более ± 0,01 г по ГОСТ Р 53228-2008 любой марки
Б.1, Б.2	Вода дистиллированная ГОСТ 6709-72
Б.1, Б.2	Пипетки градуированные 2-го класса точности вместимостью 1, 10 см ³ любого типа и исполнения по ГОСТ 29227-91 или пипетки с одной отметкой 2-го класса точности любого исполнения по ГОСТ 29169-91 Колбы мерные 2-го класса точности любого исполнения вместимостью 1000 и 100 см ³ по ГОСТ 1770-74 Цилиндры мерные 2-го класса точности вместимостью 50, 500 см ³ любого исполнения по ГОСТ 1770-74 Стакан термостойкий вместимостью 1000 см ³ любого исполнения по ГОСТ 25336-82 Азотная кислота, х.ч. по ГОСТ 4461-77 или ос.ч. по ГОСТ 11125-84 Калий двухромовокислый (К ₂ Сг ₂ О ₇), х.ч. по ГОСТ 4220-75
Б.2	Стандартный образец состава водного раствора ионов ртути утвержденного типа Γ CO 7343-96 (1 г/дм³), погрешность аттестованного значения \pm 1% (для P = 0,95)

4.2 Все применяемые средства измерений должны быть поверены в установленном порядке. Стандартные образцы применяют только в период срока годности. Средства измерений и стандартные образцы могут быть заменены аналогичными, обеспечивающими требуемую точность и пределы измерений, а вспомогательное оборудование, химические реактивы и материалы — обладающими аналогичными или лучшими техническими характеристиками.

5 ТРЕБОВАНИЯ (УСЛОВИЯ) ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ ПРОВЕДЕНИЯ ПОВЕРКИ

При проведении поверки анализаторов PA-915Лаб следует соблюдать требования безопасности при работе с химическими реактивами по ГОСТ 12.1.007-76, а также требования следующих документов:

- Правил по охране труда при эксплуатации электроустановок, утвержденных Приказом Минтруда России от 15.12.2020 № 903н;
- Правил по охране труда при использовании отдельных видов химических веществ и материалов, при химической чистке, стирке, обеззараживании и дезактивации, утвержденных Приказом Министерства труда и социального развития Российской Федерации от 27 ноября 2020 г. № 834н

6 ВНЕШНИЙ ОСМОТР АНАЛИЗАТОРОВ

При внешнем осмотре должно быть установлено:

- отсутствие механических повреждений (трещин, вмятин, окисленных контактов и др.), влияющих на работоспособность анализатора, а также линий связи;
- наличие маркировки анализатора согласно требованиям раздела 1.8 «Маркировка» технических условий ТУ 26.51.53-952-45549798-2020;

Анализатор считается выдержавшим внешний осмотр удовлетворительно, если он соответствует перечисленным выше требованиям.

7 ПОДГОТОВКА К ПОВЕРКЕ И ОПРОБОВАНИЕ

7.1 Подготовка к поверке

- 7.1.1 Перед проведением поверки следует изучить Руководство по эксплуатации анализатора (далее РЭ), Руководство пользователя программного обеспечения РАПИД (далее РП) и настоящую методику, а также обеспечить выполнение условий поверки и требований техники безопасности.
 - 7.1.2 Подготавливают средства поверки, перечисленные в разделе 2.
- 7.1.3 Приготавливают вспомогательные и поверочные растворы согласно Приложению Б.
- 7.1.4 Подготавливают анализатор к работе в соответствии с РЭ и включают его.
- 7.1.5 Подключают анализатор к компьютеру, на котором установлено программное обеспечение РАПИД.

7.2 Опробование анализаторов

- 7.2.1 При включении анализатора в сеть проверяют прохождение программы автотестирования и подключение анализатора к ПО РАПИД в соответствии с РЭ анализаторов и РП программного обеспечения РАПИД.
- 7.2.2 Результаты опробования считают положительными, если анализатор прошел автотестирование и имеется его подключение к ПО РАПИД.

8 ПРОВЕДЕНИЕ ПОВЕРКИ

8.1 Проверка соответствия программного обеспечения

Подтверждение соответствия ПО системы проводится путем проверки соответствия ПО системы тому ПО, которое было зафиксировано (внесено в банк данных) при испытаниях для целей утверждения типа.

- 8.2 Для проверки соответствия ПО выполняют следующие операции:
- запускают ПО РАПИД, в главном окне ПО РАПИД входят в окно «Информация о приборе» и нажимают кнопку «Идентификация ПО». Проводят визуализацию идентификационных данных ПО;
- сравнивают полученные данные с идентификационными данными, установленными при проведении испытаний для целей утверждения типа и указанными в Описании типа системы (приложение к Свидетельству об утверждении типа).

8.2 Определение метрологических характеристик средства измерений

- 8.2.1 Определение нижней границы диапазона измерений
- 8.2.1.1 Запускают программное обеспечение к анализатору и переходят в окно «Анализ проб», в котором выбирают режим «Градуировка», и по кнопке «Пуск» запускают измерение выходного сигнала.
- 8.2.1.2 В окне «Анализ проб» в секции «Управление атомизатором РА-915Лаб» запускают режим (сценарий) «Поверка». Ожидают не менее 40 минут с момента запуска этого сценария.
- 8.2.1.3 В окне «Настройки окна анализа проб» устанавливают следующие параметры: единицы измерения пробы и концентрации: нг, мкл, мкг/л, количество знаков после запятой: 3; Интерполяция базовой линии: по двум точкам, количество точек усреднения: 10.
- 8.2.1.4 Проверяют чистоту активированного угля согласно Приложению А. Подготавливают лодочки, входящие в комплект анализатора, отжигая каждую из них в атомизаторе в течение 2 минут. Если по окончании времени отжига выходной сигнал не вернулся на базовую линию, время отжига продлевают до выхода сигнала на базовую линию.
- 8.2.1.5 Регистрируют по два раза выходной сигнал анализатора для следующих масс ртути: 40; 200 и 500 нг. Для этого помещают в предварительно отожженную лодочку от 400 до 600 мг активированного угля, с помощью дозатора вносят требуемый объем поверочного раствора ртути (таблица 3).

Таблица 3

Масса ртути, нг	Массовая концентрация поверочного раствора, мкг/дм ³	Объем дозирования поверочного раствора, мкл	Приготовление поверочного раствора (Приложение Б)
40	200	200	Б.2.3
200	1000	200	Б.2.2
500	10000	50	Б.2.1

8.2.1.6 В окне «Анализ проб» включают интегрирование выходного сигнала в соответствии с руководством пользователя программного обеспечения и вводят лодочку в атомизатор анализатора. После возвращения выходного сигнала на базовую линию завершают интегрирование.

- 8.2.1.7 Рассчитывают и сохраняют градуировочную характеристику в виде зависимости площади пика от массы ртути по результатам, полученным по 8.2.1.5 8.2.1.6.
- 8.2.1.8 В окне «Анализ проб» переходят в режим «Анализ» и заново запускают регистрацию выходного сигнала.
- 8.2.1.9 В атомизатор вводят пустую предварительно отожженную лодочку и включают интегрирование выходного сигнала. По истечении 2 мин завершают интегрирование и лодочку извлекают. Указанную процедуру повторяют еще четыре раза.
- 8.2.1.10 При помощи программного обеспечения с использованием градуировочной характеристики, установленной по 8.2.1.7, вычисляют значения массы ртути в холостой пробе $(m_1 m_5, \text{ нг})$ и среднеквадратическое отклонение массы ртути в холостой пробе $(S_m, \text{ нг})$:

$$S_m = \sqrt{\frac{\sum_{i=1}^n (m_i - m_{\rm cp})^2}{n - 1}}$$
 (1)

8.2.1.11 Рассчитывают значение предела детектирования ртути (m_{min} , нг) по формуле:

$$m_{min} = 3 \cdot S_m \,. \tag{2}$$

- 8.2.1.12 В качестве нижней границы диапазона измерений массы ртути принимают удвоенное значение предела детектирования, рассчитанного по формуле (2).
- 8.2.1.13 Результаты поверки в части нижней границы диапазона измерений массы ртути считают положительными, если нижняя граница диапазона измерений не превышает 0,5 нг:

$$2 \cdot m_{min} \le 0.5 \tag{3}$$

- 8.2.2 Определение верхней границы диапазона измерений и относительной погрешности измерений массы ртути
- 8.2.2.1 Используя программное обеспечение к анализатору, вычисляют относительное отклонение измеренного значения массы ртути ($M_{\rm Hg,i}$), от действительной массы ртути ($M_{\rm Hg,a}$), введенной в атомизатор для каждого измерения по 8.2.1.5 8.2.1.6 (d, %).

$$d = \frac{M_{\rm Hg,i} - M_{\rm Hg, \, I}}{M_{\rm Hg, \, I}} \cdot 100 \tag{4}$$

8.2.2.2 Результаты поверки в части верхней границы диапазона измерений и относительной погрешности измерений массы ртути считают положительными, если значения относительного отклонения, вычисленные по 8.2.2.1, не превышают $\pm \left(\frac{0.2}{M} + 0.10\right) \cdot 100$,%.

9 ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ АНАЛИЗАТОРОВ МЕТРОЛОГИЧЕСКИМ ТРЕБОВАНИЯМ

Анализаторы считают соответствующими предъявляемым к ним метрологическим требованиям, если выполняются требования 8.2.1.13 и 8.2.2.2.

10 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 10.1 При проведении поверки оформляют протокол результатов поверки. Рекомендуемая форма протокола поверки приведена в приложении В.
- 10.2 Анализаторы, удовлетворяющие требованиям настоящей методики поверки, признают годными к применению. При отрицательных результатах анализаторы не допускают к применению.
- 10.3 Результаты поверки анализаторов подтверждаются сведениями о результатах поверки средств измерений, включенными в Федеральный информационный фонд по обеспечению единства измерений. По заявлению владельца анализатора или лица, представившего его на поверку, на анализатор наносится знак поверки и (или) выдается свидетельство о поверке средства измерений, и (или) в формуляр анализатора вносится запись о проведенной поверке, заверяемая подписью поверителя и клеймом, с указанием даты поверки, или выдается извещение о непригодности к применению средства измерений.

ПРИЛОЖЕНИЕ А

(рекомендуемое)

ПРОВЕРКА ПРИГОДНОСТИ АКТИВИРОВАННОГО УГЛЯ И ЕГО ОЧИСТКА

Для проверки пригодности активированного угля в дозатор помещают от 400 до 600 мг, вводят дозатор в атомизатор приставки и регистрируют выходной сигнал в течение 2 мин по 8.2.1.1 - 8.2.1.3. По завершении регистрации сигнала удаляют остатки угля из дозатора и, если был зарегистрирован пик выходного сигнала, то проводят его интегрирование и получают его площадь ($S_{\text{угля}}$, отн. ед.). При отсутствии пика уголь считают пригодным для проведения поверки.

Если пик ртути при вводе угля зарегистрирован, то в тех же условиях регистрируют выходной сигнал, вводя в атомизатор 40 нг ртути (таблица 3), и при помощи программного обеспечения вычисляют площадь пика (S_{ct} , отн. ед.).

Если $S_{\text{угля}}$ составляет не более 3 % от значения $S_{\text{ст}}$, то активированный уголь считают пригодным для проведения поверки. В противном случае активированный уголь следует заменить или провести его очистку.

Для очистки активированного угля от ртути его прокаливают его в течение 3-6 ч при 300 °C. Время прокаливания зависит от степени загрязнения угля ртутью.

После остывания проводят повторную проверку чистоты активированного угля.

ПРИЛОЖЕНИЕ Б

(обязательное)

ПРИГОТОВЛЕНИЕ ВСПОМОГАТЕЛЬНЫХ И ПОВЕРОЧНЫХ РАСТВОРОВ

Б.1 Приготовление вспомогательных растворов

- Б.1.1 Подготовка лабораторной посуды
- Б.1.1.1 Вновь поступившую посуду моют горячей водой, затем горячим раствором азотной кислоты (1:1). После этого тщательно, не менее 5 раз, ополаскивают дистиллированной водой.
- Б.1.1.2 Для приготовления растворов должен быть выделен специальный комплект мерной посуды, причем каждая мерная колба должна использоваться исключительно для приготовления растворов одной и той же концентрации, а каждая пипетка только для отбора определенного раствора. Мерные колбы и пробки к ним должны иметь соответствующую маркировку. Мерные колбы следует хранить в закрытом виде в свободном от следов ртути месте отдельно от остальной химической посуды.
- Б.1.1.3 Для отбора каждого из растворов необходимо иметь свой цилиндр или пипетку, которые должны быть соответствующим образом промаркированы. При использовании дозатора для каждого раствора необходимо иметь свой сменный наконечник.

Б.1.2 Приготовление раствора разбавления

В термостойкий стакан помещают 500 см³ дистиллированной воды и осторожно приливают, тщательно перемешивая, 50 см³ концентрированной азотной кислоты. Когда раствор остынет, его переносят в мерную колбу вместимостью 1000 см³, добавляют 200 мг калия двухромовокислого и доводят до метки дистиллированной водой.

Раствор хранят в стеклянном сосуде с притертой пробкой или завинчивающейся крышкой. Срок хранения – 3 месяца при температуре не выше 25 °C.

Б.2 Приготовление поверочных растворов

Для приготовления растворов ртути используются стандартные образцы состава раствора ионов ртути утвержденного типа с массовой концентрацией ртути 1,00 г/дм³. Утилизация растворов, содержащих ртуть, проводится в соответствии с действующими санитарными правилами.

Б.2.1 Приготовление поверочного раствора ртути массовой концентрации $10 \text{ мг/дм}^3 (10000 \text{ мкг/дм}^3)$

Вскрывают ампулу со стандартным образцом состава водного раствора ионов ртути массовой концентрации ртути 1,00 г/дм³. При помощи пипетки отбирают 1 см³ стандартного образца и переносят в мерную колбу вместимостью 100 см³, в которую предварительно внесено 25 см³ раствора разбавления по Б.1.2. Содержимое колбы разбавляют до метки раствором разбавления и тщательно перемешивают.

Срок хранения раствора при температуре от 2°C до 8°C – 6 месяцев.

Б.2.2 Приготовление поверочного раствора ртути массовой концентрации $1000~{\rm MKZ}/{\rm d}{\rm M}^3$

В мерную колбу вместимостью 100 см³ помещают 25 см³ раствора разбавления. Отбирают при помощи пипетки (с одной отметкой или градуированной) 10 см³ раствора ртути с массовой концентрацией 10 мг/дм³ (см. Б.2.1) и переносят в мерную колбу. Объем раствора доводят до метки раствором разбавления. Содержимое колбы тщательно перемешивают.

Срок хранения раствора при температуре от 2°C до 8°C – 6 мес.

Б.2.3 Приготовление поверочного раствора ртути массовой концентрации $200~{\rm MKz/\partial M}^3$

В мерную колбу вместимостью 100 см³ помещают 25 см³ раствора разбавления. Отбирают при помощи пипетки (с одной отметкой или градуированной) 2 см³ раствора массовой концентрацией ртути 10 мг/дм³ (см. Б.2.1) и переносят в мерную колбу. Объем раствора доводят до метки раствором разбавления. Содержимое колбы тщательно перемешивают.

Срок хранения раствора при температуре от 2° С до 8° С – 3 мес.

Относительная стандартная неопределенность массовой концентрации ртути в поверочных растворах не превышает 1,2 %.

приложение в

(рекомендуемое)

ФОРМА ПРОТОКОЛА ПОВЕРКИ

	(дата поверки)
Наименование СИ	

Наименование СИ	
Зав. №	*
Регистрационный номер в ФИФ ОЕИ	
Изготовитель СИ	
Год выпуска СИ	
Наименование методики поверки СИ	
Владелец СИ	

Условия проведения поверки:

Параметры	Требования МП	Измеренные значения
Температура окружающего воздуха, °С		
Относительная влажность воздуха, %		
Атмосферное давление, кПа		

Средства поверки
(наименование эталонного средства измерений или вспомогательного средства поверки, сведения о поверке/аттестации)
Внешний осмотр средства измерений
(результаты внешнего осмотра средства измерений)
Подготовка к поверке и опробование средства измерений
(результаты подготовки к поверке и опробования средства измерений)
Проверка программного обеспечения средства измерений
(результаты проверки ПО средства измерений)

Определение метрологических характеристик

Наименование метрологической характеристики	Действительное значение массы ртути, нг	Значение, получен- ное при по- верке, нг	Относительная погрешность измерений, %	Допускае- мое значе- ние, %
Диапазон измерений и относи- тельная погрешность анализатора				$\pm \left(\frac{0.2}{M} + 0.10\right)$

Результаты поверки	
•	(годен, забракован – указать причину непригодности)
На основании резул	втатов поверки выдано свидетельство о поверке (извещение с
непригодности) №	
Поверитель:	

приложение г

(обязательное)

МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ АНАЛИЗАТОРОВ

Наименование характеристики	Значение
Диапазон измерений массы ртути, нг	от 0,5 до 500
Пределы допускаемой относительной погрешности измерений массы ртути, %	$\pm \left(\frac{0.2}{M} + 0.10\right) \cdot 100$
* М- измеренное значение массы ртути, нг.	