ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИЧЕСКОЙ СЛУЖБЫ ВНИИМС

УТВЕРЖДАЮ:

Заместитель директора по производственной метрологии ФГУП «ВНИИМС»

Н.В. Иванникова

_ 20<u>/8</u> г.

Барьеры искрозащиты серии SIB

Методика поверки МП 206.1-159-2018

Содержание

Вводная часть	3
1 Операции поверки	3
2 Средства поверки	3
3 Требования к квалификации поверителей	4
4 Требования безопасности	4
5 Условия поверки	4
6 Подготовка к поверке	4
7 Проведение поверки	5
8 Подтверждение соответствия программного обеспечения	8
9 Оформление результатов поверки	8
Приложение А	9
Приложение Б	13
Приложение В	16
Приложение Г	17

ВВОДНАЯ ЧАСТЬ

Настоящая методика распространяется на барьеры искрозащиты серии SIB (далее - барьеры) и устанавливает методы и средства их первичной и периодической поверки.

Знак поверки наносится в паспорт и (или) на свидетельство о поверке.

Предусмотрена возможность производить первичную и периодическую поверку барьеров только по тем типам сигналов и диапазонам измерений, для которых он используется эксплуатирующей организацией при наличии письменного заявления.

Рекомендованный интервал между поверками – 2 года.

Поверку могут проводить аккредитованные в установленном порядке юридические лица и индивидуальные предприниматели.

1 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки должны быть выполнены операции, указанные в таблице 1.

Таблица 1

	Номер	Проведение операций при	
Наименование операции	пункта	первичной	периодической
		поверке	поверке
Внешний осмотр	7.1	+	+
Опробование	7.2	+	. +
Определение метрологических характеристик	7.3	+	+
Подтверждение соответствия программного обеспечения	8	+	+
Оформление результатов поверки	9	+	+

2 СРЕДСТВА ПОВЕРКИ

2.1 При проведении поверки рекомендуется применять основные и вспомогательные средства поверки, указанные в таблицах 2 и 3.

	_		\sim
1 ล	n	пипа	-)

Номер пункта методики поверки	Наименование эталонного средства измерений, номер документа, регламентирующего технические требования к средству, основные метрологические и технические характеристики
7.2 - 7.3	Калибратор многофункциональный Calibro 141, (регистрационный номер в Федеральном информационном фонде № 39949-15)
7.2 - 7.3	Калибратор процессов многофункциональный Fluke 725, (регистрационный номер в Федеральном информационном фонде № 52221-12)

Таблица 3 – вспомогательные средства поверки

Номер пункта методики поверки	Наименование вспомогательных средств поверки, номер документа, регламентирующего технические требования к средству, основные метрологические и технические характеристики
7.2 - 7.3	Термогигрометр ИВА-6А-КП-Д, (регистрационный номер в Федеральном информационном фонде № 46434-11)
7.2 - 7.3	Источник питания постоянного тока, напряжение питания от 12 до 28 В

Примечание: Допускается применение средств поверки, не приведенных в перечне, но имеющих характеристики не хуже приведенных в таблице

2.2 Все средства поверки должны быть исправными и иметь документы о поверке или аттестации

3. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К проведению поверки допускаются лица, изучившие эксплуатационную документацию на поверяемые средства измерений, эксплуатационную документацию на средства поверки и аккредитованные на право проведения поверки в соответствии с действующим законодательством РФ.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1 При проведении поверки должны быть соблюдены требования безопасности, изложенные в эксплуатационных документах на поверяемые средства измерений и применяемые средства поверки.
- 4.2 Средства поверки, которые подлежат заземлению, должны быть надежно заземлены. Подсоединение зажимов защитного заземления к контуру заземления должно производиться ранее других соединений, а отсоединение после всех отсоединений.

5 УСЛОВИЯ ПОВЕРКИ

При проведении поверки барьеров должны соблюдаться условия:

- температура окружающего воздуха (20 ± 5) °C;
- относительная влажность воздуха от 45 до 80 %;
- атмосферное давление от 84 до 106,7 кПа.

6 ПОДГОТОВКА К ПОВЕРКЕ

Перед проведением поверки необходимо выполнить следующие подготовительные работы:

- 6.1 Проверка наличия свидетельств поверки на все средства поверки.
- 6.2 Подготовка средств поверки к работе по соответствующим инструкциям по эксплуатации.
- 6.3 Подготовка к работе поверяемого барьера в соответствии с руководством по эксплуатации.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1. Внешний осмотр.

При внешнем осмотре должно быть установлено соответствие барьера следующим требованиям:

- 7.1.1. Барьер не должен иметь повреждений и дефектов, ухудшающих внешний вид и препятствующих его применению.
- 7.1.2. На фирменной табличке должно быть обозначение варианта исполнения, а также заводской номер.
 - 7.2 Опробование
- 7.2.1. Для проведения опробования барьеров SIB-01AI-H Ex, SIB-02AI-H Ex, SIB-01AI-SH Ex необходимо последовательно:
- а) Собрать схему в соответствии с исполнением барьера, приведенную в приложении Б;
 - б) На поверяемый барьер подать напряжение питания постоянного тока.
 - в) Задать на калибраторе ток равный 1 мА;
 - г) Произвести измерения с помощью измерителя

Результаты опробования считаются удовлетворительными, если на выходе поверяемого барьера есть ток, силой 1 мА и загораются все световые индикаторы в соответствии с их обозначением.

- 7.2.2. Для проведения опробования барьера SIB-01AO-H Ех необходимо последовательно:
- а) Собрать схему в соответствии с исполнением барьера, приведенную в приложении В;
 - б) На поверяемый барьер подать напряжение питания постоянного тока.
 - в) Задать на калибраторе ток равный 1 мА;
 - г) Произвести измерения с помощью измерителя

Результаты опробования считаются удовлетворительными, если на выходе поверяемого барьера есть ток, силой 1 мА и загораются все световые индикаторы в соответствии с их обозначением.

- 7.2.3. Для проведения опробования барьеров SIB-01TI Ex, SIB-02TI Ex необходимо последовательно:
- а) Собрать схему в соответствии с исполнением барьера, приведенную в приложении Γ ;
- б) Провести конфигурирование по выбранному типу термопреобразователя, диапазону измерений, схеме подключения, в соответствии с РЭ;
 - в) На поверяемый барьер подать напряжение питания постоянного тока;
- г) Задать на калибраторе температуру датчика равную 50 % от полного диапазона измерений для выбранного типа термопреобразователя;
 - д) Произвести измерения с помощью измерителя

Результаты опробования считаются удовлетворительными, если на выходе поверяемого барьера есть ток, в соответствии с заданными при конфигурации настройками и загораются все световые индикаторы в соответствии с их обозначением.

- 7.3 Определение метрологических характеристик
- 7.3.1 Основная приведенная погрешность преобразования в диапазоне от 0 до 20 мА барьеров SIB-01AI-H Ex, SIB-02AI-H Ex, SIB-01AI-SH Ex.
 - 7.3.1.1 Измерения проводятся отдельно по каждому каналу.
- 7.3.1.2 Для нахождения основной приведенной погрешности необходимо последовательно:
- а) подключить калибратор Fluke 725 в режиме источника и измерителя постоянного тока к барьеру в соответствии со схемой, приведенной в Приложении Б для требуемого варианта исполнения;
 - б) задать на калибраторе ток, равный 1 мА;
 - в) измерить значение тока на выходе устройства;
- г) приняв показания калибратора за эталонные, найти основную приведенную погрешность:

$$\gamma = \frac{x - x_{\text{\tiny 3T}}}{X_n} \cdot 100\%,$$

где x — измеренное значение тока;

 $x_{\rm эт}$ — заданное значение тока;

- X_n нормирующее значение, равно разности между максимальным и минимальным значениями диапазона преобразования сигнала устройства;
- д) увеличивая ток, задаваемый калибратором, на 4 мА, повторить пп. в)...г) до достижения значения тока на выходе калибратора, равного 20 мА.
- 7.3.1.3 Устройство признают прошедшим поверку, если значение основной приведенной погрешности в поверяемом диапазоне не превышает допустимые значения основной приведенной погрешности, указанной в таблице А.1 приложения А.
- 7.3.2 Основная приведенная погрешность преобразования в диапазоне от 0 до 20 мА барьера SIB-01AO-H Ex.
- 7.3.2.1 Для нахождения основной приведенной погрешности необходимо последовательно:
- а) подключить калибратор Fluke 725 в режиме источника и измерителя постоянного тока к каналу аналогового вывода устройства в соответствии со схемой, приведенной в Приложении В;
 - б) задать ток калибратора равный 1 мА;
 - в) измерить значение тока на выходе устройства;
- г) приняв показания калибратора за эталонные, найти основную приведенную погрешность:

$$\gamma = \frac{x - x_{\text{3T}}}{X_n} \cdot 100\%,$$

где x — измеренное значение тока;

 $x_{\rm эт}$ — заданное значение тока;

- X_n нормирующее значение, равно разности между максимальным и минимальным значениями диапазона преобразования сигнала устройства;
- д) увеличивая ток, задаваемый калибратором, на 4 мА, повторить пп. в)..г) до достижения значения тока на выходе калибратора, равного 20 мА.

- 7.3.2.2 Устройство признают прошедшим поверку, если значение основной приведенной погрешности в поверяемом диапазоне не превышает допустимые значения основной приведенной погрешности, указанной в таблице А.1 приложения А.
- 7.3.3 Основная приведенная погрешность преобразования барьеров SIB-01TI Ex, SIB-02TI Ex.
- 7.3.3.1. Перед определением основной приведенной погрешности барьера должно быть проведено конфигурирование в соответствии с РЭ.
- 7.3.3.2 Определение основной приведенной погрешности проводится отдельно для каждого канала при измерении сигналов термопреобразователей, напряжения постоянного тока, электрического сопротивления постоянному току.
- 7.3.3.3 Для нахождения основной приведенной погрешности канала необходимо последовательно:
- а) подключить к каналу аналогового ввода калибратор Calibro 141 в режиме воспроизведения сигналов термопреобразователей, напряжения постоянного тока или электрического сопротивления постоянному току в соответствии со схемой, приведенной в Приложении Г для соответствующего варианта исполнения и номера канала;
 - б) подать на устройство напряжение питания;
- в) на калибраторе Calibro 141 установить, соответствующее 0 % от полного диапазона измерений для выбранного типа входного сигнала;
- г) калибратором Fluke 725 измерить значение постоянного тока на выходе устройства;
- д) приняв показания калибратора Calibro 141 за эталонные, найти основную приведенную погрешность:

$$\gamma = \frac{x - x_{\text{9T}}}{X_{\text{H}}} \cdot 100\%,$$

где x — измеренное значение;

 $x_{\rm эт}$ – эталонное значение;

 $X_{\rm H}$ — нормирующее значение, равно диапазону входных значений из Приложения ${\rm A.}$

Измеренное значение, в зависимости от типа входного сигнала, рассчитывается по одной из формул:

$$\begin{split} T_{\text{\tiny M3M}} &= \left(\frac{T_{max} - T_{min}}{I_{max} - I_{min}}\right) \times \left(I_{\text{\tiny M3M}} - I_{min}\right) + T_{min}, \\ U_{\text{\tiny M3M}} &= \left(\frac{U_{max} - U_{min}}{I_{max} - I_{min}}\right) \times \left(I_{\text{\tiny M3M}} - I_{min}\right) + U_{min}, \end{split}$$

$$R_{\text{\tiny H3M}} = \left(\frac{R_{max} - R_{min}}{I_{max} - I_{min}}\right) \times \left(I_{\text{\tiny H3M}} - I_{min}\right) + R_{min},$$

где $T_{max}, T_{min}, U_{max}, U_{min}, R_{max}, R_{min}$ - задаются в настройках барьера;

 I_{max} , I_{min} — соответствуют максимуму и минимуму выходного тока, заданному в настройках барьера.

е) повторить пп. г)..д) при значениях, соответствующих 25, 50, 75, 100 % от полного диапазона измерений для выбранного типа входного сигнала.

Результаты поверки считать положительными, если значение основной приведенной погрешности в поверяемом диапазоне не превышает допустимые значения основной приведенной погрешности, указанной в таблице A.1 приложения A.

8 ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

Подтверждение соответствия программного обеспечения (далее - ПО) проводят для барьеров SIB-01TI Ex и SIB-02TI Ex, которое устанавливается в энергонезависимую память при изготовлении.

- 8.1 Подтверждение соответствия ПО проводят в следующем порядке:
- подключить барьер к персональному компьютеру.
- запустить ПО «KSE Device Tool»;
- в меню ПО выбрать пункт «Подключиться»;
- из списка устройств выбрать "SIB"
- дождаться подключения;
- в меню ПО выбрать пункт «Версия прошивки»;
- выведенный параметр проверить на соответствие таблице.

Результаты проверки считаются удовлетворительными, если значение соответствует версии, указанной в таблице 4.

Таблица 4 – Характеристики ПО

Идентификационные данные (признаки)	Значение			
Идентификационное наименование ПО	SIBTSoft			
Номер версии (идентификационный номер) ПО	не ниже 005.х.ххх ¹⁾			
1) обозначение «х» не относится к метрологически значимому ПО				

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

На основании положительных результатов выписывают свидетельство о поверке в соответствии с Приказом Минпромторга России от 02.07.2015 № 1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».

При отрицательных результатах поверки устройство признается негодным к дальнейшей эксплуатации и на него выдают извещение о непригодности в соответствии с Приказом Минпромторга России от 02.07.2015 № 1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке» с указанием причин.

А.И. Терзи

Приложение A
Таблица А.1 – Основные метрологические характеристики барьеров

Исполнение	Преобразуемая физическая величина/сигнал	Диапазон входных значений	Диапазон выходных значений	Пределы допускаемой основной приведенной (к диапазону входных значений) погрешности преобразований в нормальных условиях измерений ¹⁾	Пределы допускаемой дополнительной приведенной (к диапазону входных значений) погрешности преобразований от изменения температуры окружающего воздуха от нормальных условий на каждый $10 ^{\circ}\mathrm{C}$, %
1	2	3	4	5	6
SIB-01AI-H EX SIB-02AI-H EX SIB-01AI-SH EX SIB-01AO-H EX	Сила постоянного тока	от 0 до 20 мА	от 0 до 20 мА	±0,1	±0,05
		Pt1000 (от -200 до +850 °C)		±0,04	±0,02
3	Электрическое	1000П (от -200 до +850 °C)	от 0 до 20 мА	±0,04	±0,02
SIB-01TI Ex	сопротивление постоянному току (термопреобразователей сопротивления по ГОСТ 6651-2009)	Pt50 (от -200 до +850 °C)		±0,08	±0,05
SIB-02TI Ex		Pt100 (от -200 до +850 °C)		±0,05	±0,02
		50П (от -200 до +850 °C)		±0,08	±0,05
		100П (от -200 до +850 °C)		±0,05	±0,02

Продолжение таблицы А.1

1	2	3	4	5	6
		50M (от -180 до +200 °C)		±0,15	±0,08
		100М (от -180 до +200 °C)		±0,09	±0,05
		Си50 (от -50 до +200 °C)		±0,21	±0,1
		Cu100 (от -50 до +200 °C)		±0,13	±0,08
		Ni100 (от -69 до +180 °C)		±0,10	±0,05
		ТЖК (J) (от -210 до +1200 °C)		±0,09	±0,05
		ТХА (K) (от -270 до +1372 °C)		±0,10	±0,05
		ТНН (N) (от -270 до +1300 °C)		±0,12	±0,05
		ТХК (L) (от -200 до +800 °C)		$\pm 0{,}08$	±0,05
	Напряжение постоянного тока (термопары по	ТХКн (E) (от -270 до +1000 °C)		±0,08	±0,05
	ΓΟCT P 8.585-2001) ²⁾	ТПП (R) (от -50 до +1768 °C)		±0,14	±0,05
		ТМК (Т) (от -270 до +400 °C)		±0,12	±0,05
		ТВР (A1) (от 0 до +2500 °C)		±0,09	±0,05
		ТВР (A2) (от 0 до +1800 °C)		±0,11	±0,05
		ТВР (А3) (от 0 до +1800 °C)		±0,11	±0,05

Продолжение таблицы А.1

11	2	3	4	5	6
		ТПП (S) (от -50 до +1768 °C)		±0,15	±0,05
		ТПР (В) (от 0 до +1820 °C)		±0,20	±0,1
		ТМК (М) (от -200до +100 °C)		±0,25	±0,1
	Напряжение	от -1500 до +1500 мВ		±0,04	±0,02
	постоянного тока	от -150 до +150 мВ		±0,05	±0,02
	Электрическое сопротивление постоянному току	от 0 до 5000 Ом		±0,04	±0,02

Примечание:

^{1) -} Нормальные условия измерений:

⁻ температура окружающей среды – от 15 до 25 °C;

⁻ относительная влажность воздуха при +25 °C, - от 45 до 80 %;

⁻ атмосферное давление, - от 84,0 до 106,7 кПа

 $^{^{2)}}$ - Нормировано без учета погрешности измерения температуры холодного спая. Пределы допускаемой абсолютной погрешности компенсации температуры холодного спая при температуре окружающей среды (20 \pm 5) °C не превышает \pm 1,5 °C.

Таблица А.2 – Основные технические характеристики барьеров

Наименование характеристики	Значение
Параметры электрического питания:	
- напряжение постоянного тока, В	от 18 до 30
Потребляемая мощность, Вт, не более	2,8
Маркировка взрывозащиты по ТР ТС 012/2011	[Ex ia] IIC
Рабочие условия измерений:	
- температура окружающей среды, °С	от -40 до +60
- относительная влажность воздуха при +25 °C, %, не более	98 (без конденсации)
- атмосферное давление, кПа	от 84 до 106,7
Степень защиты корпуса	IP30
Габаритные размеры, мм, не более, для исполнений:	
- SIB-01AI-H Ex, SIB-02AI-H Ex, SIB-01AI-SH Ex,	
SIB-01AO-H Ex	
- ширина	17,5
- высота	111,0
- глубина	113,5
- SIB-01 TI Ex, SIB-02 TI Ex	
- ширина	17,5
- высота	108,0
- глубина	113,5
Масса, кг, не более	0,2
Средний срок службы, лет, не менее	10
Средняя наработка на отказ, ч, не менее	120000

приложение б

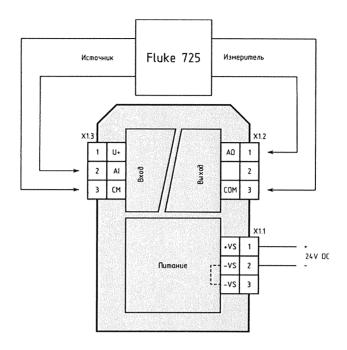


Схема подключения оборудования для поверки SIB-01AI-H Ex

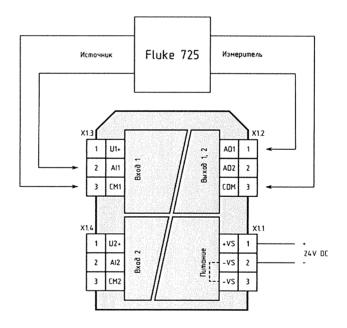


Схема подключения оборудования для поверки SIB-02AI-H Ex (первый канал)

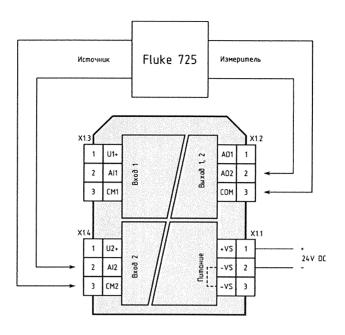


Схема подключения оборудования для поверки SIB-02AI-H Ex (второй канал)

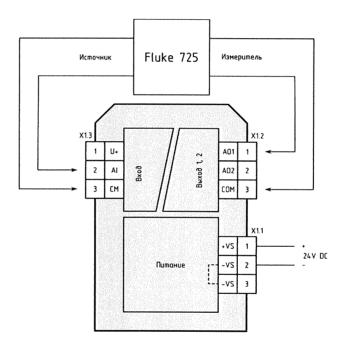


Схема подключения оборудования для поверки SIB-01AI-SH Ex (выход 1)

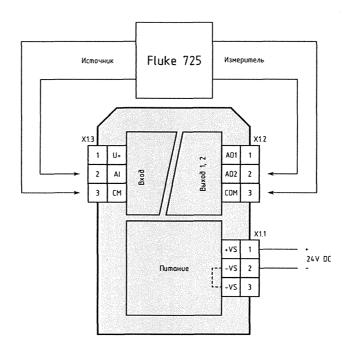


Схема подключения оборудования для поверки SIB-01AI-SH Ex (выход 2)

приложение в

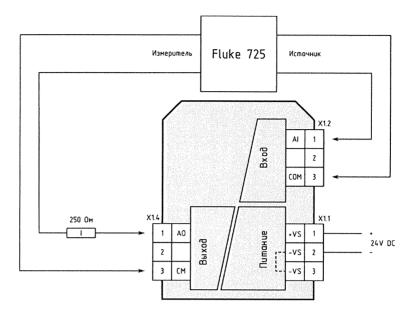


Схема подключения оборудования для поверки SIB-01AO-H Ex

ПРИЛОЖЕНИЕ Г

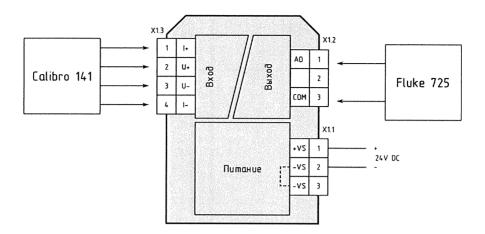


Схема подключения оборудования для поверки SIB-01TI Ex

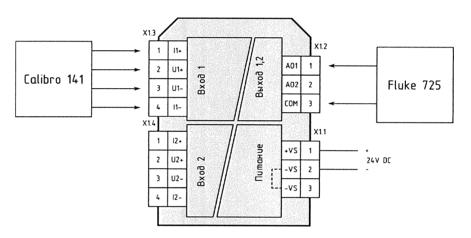


Схема подключения оборудования для поверки SIB-02TI Ex (первый канал)

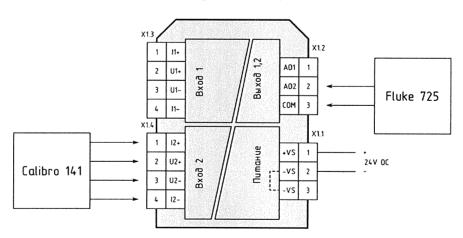


Схема подключения оборудования для поверки SIB-02TI Ex (второй канал)