Приложение № 4 к сведениям о типах средств измерений, прилагаемым к приказу Федерального агентства по техническому регулированию и метрологии от «31» декабря 2020 г. № 2333

## ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Контроллеры измерительные FloBoss модели S600+

## Назначение средства измерений

Контроллеры измерительные FloBoss модели S600+ (далее – контроллеры) предназначены для измерений и преобразований электрических сигналов измерительных преобразователей температуры, расхода, давления, плотности в измеряемые величины, расчета по измеренным значениям расхода, массы и объема нефти. Контроллеры применяются в составе системы обработки информации системы измерений количества и показателей качества нефти.

## Описание средства измерений

Принцип действия контроллера основан на измерении и преобразовании сигналов измерительных преобразователей и расходомеров в информацию об измеряемой среде с последующим вычислением и представлением информации на дисплее контроллера, подключенном принтере или на дисплее подключенного персонального компьютера (APM оператора).

Входные сигналы поступают в контроллер через каналы ввода/вывода (аналоговые, импульсные, частотные, дискретные или цифровые каналы передачи данных (HART, другие). По полученным сигналам контроллер, с помощью заложенного в нем програмного обеспечения, производит вычисления необходимых для учета и управления параметров.

Вычислительным центром контроллера являются один основной процессор и несколько вспомогательных процессоров для эффективной работы с 64-битными числами с плавающей точкой. Это обеспечивает требуюмую точность привыполнении математических операций, а целостность результирующих данных обеспечиается хранением нарастающих счетчиков в ячейках памяти с тройным резервированием (Tri-reg format).

На передней панели контроллера располагаются жидкокристаллический дисплей с подсветкой, 26-кнопочная клавиатура для локального управления контроллером и ввода данных, а также светодиод состояния контроллера. Жидкокристаллический дисплей и клавиатура обеспечивают возможность просмотра данных и конфигурационных параметров непосредственно на месте установки контроллера и могут быть настроены для работы с конкретным объектом.

Контроллер позволяет осуществлять:

- вычисление расхода по нескольким измерительным линиям;
- балансирование потоков по линиям и управление общей пропускной способностью узла учета;
  - управление пробоотборным устройством;
- управление поверочными операциями для этого контроллер оснащается специализированной платой прувера и поддерживает работу с поверочными установками;
  - управление дозированием и загрузкой продукта;
- архивирование измеренных и вычисленных параметров в архивных базах данных произвольного типа и периодически (настраивается при конфигурировании);
  - ведение журналов событий и аварий;

- сигнализацию при отказе преобразователей, при выходе параметров за установленные пределы и при сработке внутренних контуров самодиагностики;
  - печать данных на подключенный принтер;
- управление и обмен данными с подчиненными устройствами по цифровым каналам связи;
- передачу информации в системы более высокого уровня по имеющимся интерфейсам связи.

Контроллеры имеют интерфейсы связи RS232, RS422/RS485 и Ethernet для обмена данными с периферийным оборудованием и/или с системой более высокого уровня. Поддерживаются протоколы Modbus и TCP/IP.

Контроллеры содержат несколько типов памяти для хранения информации. Энергонезависимая память EPROM – для хранения операционной системы прибора, включая все функциональные блоки учета и управления, защищенные кодом CRC. Энергонезависимая Flash память – для резервного хранения конфигурации прибора. Энергонезависимая SRAM (с батарейной подпиткой) – для хранения текущей конфигурвции прибора и архивных данных. DRAM – для временного хранения информации.

Пломбировка контроллера осуществляется с помощью проволоки и свинцовой (пластмассовой) пломбы с нанесением знака поверки давлением на пломбу, установленной на контровочной проволоке, пропущенной через специальные отверстия, предусмотренные на корпусе контроллера.

Общий вид контроллера и схема пломбировки от несанкционированного доступа представлены на рисунке 1.



Рисунок 1 — Общий вид контроллера и схема пломбировки от несанкционированного доступа

#### Программное обеспечение

Таблица 1- Идентификационные данные програмного обеспечения

| Идентификационные данные (признаки)          | Значение        |
|----------------------------------------------|-----------------|
| Идентификационное наименование ПО            | LinuxBinary.app |
| Номер версии (идентификационный номер) ПО    | 06.25           |
| Цифровой идентификатор ПО                    | 0x1990          |
| Алгоритм вычисления цифрового идентификатора | CRC16           |

Уровень защиты ПО от непреднамеренных изменений — «средний» в соответствии с Р 50.2.077-2014 «ГСИ. Испытания средств измерений в целях утверждения типа. Проверка защиты программного обеспечения».

## Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

| тиолица 2 - Инстрологи теские ларактеристики                                                                                                                                                                                                                                  |               |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|
| Наименование характеристики                                                                                                                                                                                                                                                   | Значение      |  |
| Диапазон измерений силы постоянного электрического тока, мА                                                                                                                                                                                                                   | от 4 до 20    |  |
| Диапазон измерений частоты частотно-импульсного сигнала, Гц                                                                                                                                                                                                                   | от 1 до 10000 |  |
| Пределы допускаемой погрешности измерений силы постоянного тока приведенной к диапазону измерений, %                                                                                                                                                                          | $\pm 0,04$    |  |
| Пределы допускаемой абсолютной погрешности измерений частоты, Гц                                                                                                                                                                                                              | ±0,1          |  |
| Пределы допускаемой абсолютной погрешности измерений количества импульсов на каждые 10000 импульсов, имп.                                                                                                                                                                     | ±1            |  |
| Пределы допускаемой относительной погрешности при вычислении расхода, объема, массы,%                                                                                                                                                                                         | ±0,01         |  |
| Пределы допускаемой относительной погрешности при вычислениях коэффициентов преобразования и поправочных коэффициентов преобразователей расхода (включая погрешности задействованных измерительных каналов без учета погрешности первичных измерительных преобразователей), % | ±0,025        |  |

Таблица 3 – Технические характеристики

| Наименование характеристики                                           | Значение      |
|-----------------------------------------------------------------------|---------------|
| Напряжение питания постоянного тока, В                                | От 20 до 32   |
| Потребляемая мощность, Вт, не более                                   | 48            |
| Габаритные размеры, мм. не более:                                     |               |
| — высота                                                              | 305           |
| – ширина                                                              | 270           |
| – длина                                                               | 85            |
| Масса, кг. не более                                                   | 6             |
| Условия эксплуатации:                                                 |               |
| <ul><li>температура окружающего воздуха. °C</li></ul>                 | от +18 до +28 |
| <ul><li>− относительная влажность при температуре +35 °C, %</li></ul> | от 30 до 80   |
| <ul><li>– атмосферное давление. кПа</li></ul>                         | от 84 до 106  |
| Наработка на отказ, не более, ч                                       | 20000         |
| Средний срок службы, не менее, лет                                    | 10            |

#### Знак утверждения типа

Знак утверждения типа наносится на титульный лист инструкции по эксплуатации СИКН типографским способом.

#### Комплектность средства измерений

Таблица 4 – Комплектность средства измерений

| Наименование                | Обозначение        | Количество |
|-----------------------------|--------------------|------------|
| Контроллер измерительный    | FloBoss S600+      |            |
|                             | (зав. №№ 18361944, | 3 шт.      |
|                             | 8361945, 18361951) |            |
| Руководство по эксплуатации | -                  | 1 экз.     |
| Методика поверки            | НА.ГНМЦ.0475-20 МП | 1 экз.     |
| Програмное обеспечение      | Config 600         | 1 шт.      |

## Поверка

осуществляется по документу НА.ГНМЦ.0475-20 МП «Инструкция. ГСИ. Контроллеры измерительные FloBoss S600+. Методика поверки», утвержденному АО «Нефтеавтоматика» в  $25.05.2020~\Gamma$ .

Основные средства поверки:

- рабочий эталон 2 разряда единицы силы постоянного электрического тока в соответствиии с Государственной поверочной схемой для средств измерения силы постоянного электрического тока в диапазоне от  $1 \cdot 10^{-16}$  до 100A, утвержденной приказом Росстандарта от 01.10.2018 № 2091 в диапазоне от 0.25 мA;
- рабочий эталон 4 разряда единицы частоты электрического тока в соответствиии с Государственной поверочной схемой для средств измерений времени и частоты, утвержденной приказом Росстандарта от 31.07.2018 № 1621 в диапазоне от 1 Гц до 10000 Гц.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке контроллера.

#### Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

# Нормативные и технические документы, устанавливающие требования к контроллерам измерительным FloBoss модели S600+

Государственная поверочная схема для средств измерения силы постоянного электрического тока в диапазоне от  $1 \cdot 10^{-16}$  до 100 A, утвержденная приказом Федерального агенства по техническому регулированию и метрологии от 01.10.2018 № 2091.

Государственная поверочная схема для средств измерений времени и частоты, утвержденная приказом Федерального агентства по техническому регулированию и метрологии от 31 июля 2018 г. № 1621.

Техническая документация фирмы «Emerson Process Management Ltd.». Великобритания.

#### Изготовитель

Фирма «SC Benchmark Electronics Romania SRL», Румыния

Oras Ghimbav, Str. Aeroportului nr.6, Parcul Industrial ICCO – Ghimbav, Hala H3, Judetul Brasov CP 38, Oficiul Postal 2, Brasov 507075, Румыния

#### Заявитель

Акционерное общество «Нефтеавтоматика» (АО «Нефтеавтоматика»)

ИНН 0278005403

Адрес: 450005, г. Уфа, ул. 50-летия Октября, 24

Телефон/факс: (347) 228-81-70

E-mail: nefteavtomatika@nefteavtomatika.ru, Web-сайт: http://www.nefteavtomatika.ru

## Испытательный центр

Акционерное общество «Нефтеавтоматика» (АО «Нефтеавтоматика»)

Адрес: 420029, Российская Федерация, Республика Татарстан, г. Казань, ул. Журналистов, д. 2a

Телефон: +7 (843) 567-20-10, 8-800-700-78-68

Факс: +7 (843) 567-20-10

E-mail: gnmc@nefteavtomatika.ru

Аттестат аккредитации АО «Нефтеавтоматика» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311366 от 27.07.2017 г.