Приложение № 19 к сведениям о типах средств измерений, прилагаемым к приказу Федерального агентства по техническому регулированию и метрологии от «25» декабря 2020 г. № 2238

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Расходомеры крыльчатые HMP 25-SC-W.PN40.E.V-090

Назначение средства измерений

Расходомеры крыльчатые HMP 25-SC-W.PN40.E.V-090 (далее – расходомеры) предназначены для измерений объемного расхода и объема жидкости.

Описание средства измерений

Принцип действия расходомеров основан на взаимодействии крыльчатки первичного преобразователя с движущимся по нему потоком жидкости. Частота вращения крыльчатки пропорциональна объемному расходу жидкости, а число импульсов, генерируемое вращением крыльчатки — объему жидкости, прошедшему через первичный преобразователь. Дальнейшая обработка сигнала с первичного преобразователя производится вторичным преобразователем.

Расходомеры состоят из первичного преобразователя: HMP 25-SC-W.PN40.E.V-090 и вторичного преобразователя: VTC-K-K-N-P.

Первичный преобразователь представляет собой отрезок стальной трубы, в проточной части которой установлена крыльчатка, свободно вращающаяся под действием проходящего потока. Во внешней части корпуса находится электромагнитная катушка с магнитным сердечником, двухпроводной преобразователь частоты вращения в пропорциональную частоту переменного напряжения. Вторичный преобразователь предназначен для усиления и преобразования сигнала первичного преобразователя, отображения результатов измерений на встроенном дисплее и их преобразования в импульсные сигналы прямоугольной формы и сигналы силы постоянного тока от 4 до 20 мА.

Общий вид средства измерений представлен на рисунке 1.

Рисунок 1 – Общий вид расходомеров крыльчатых HMP 25-SC-W.PN40.E.V-090

Пломбирование расходомеров крыльчатых HMP 25-SC-W.PN40.E.V-090 не предусмотрено

Программное обеспечение

Расходомеры имеют встроенное программное обеспечение (далее - Π O), предназначенное для обработки измерительной информации, индикации результатов измерений, формирования выходных сигналов, настройки и проведения диагностики.

Уровень защиты ПО «средний» в соответствии Р 50.2.077-2014.

Таблица 1 – Идентификационные данные ПО

Идентификационные данные (признаки)	Значение	
Индентификационное наименование ПО	VTC	
Номер версии (идентификационный номер) ПО, не ниже	V1.XX	

Метрологические и технические характеристики

Таблица 2- Метрологические характеристики

Наименование характеристики	Значение
Диаметр условного прохода, Ду, мм	25
Диапазон измерения объемного расхода, м ³ /час	от 1,68 до 16,8
Пределы допускаемой относительной погреш-	
ности измерений объемного расхода и объема	±3
жидкости, %	

Таблица 3 – Основные технические характеристики

Наименование характеристики	Значение
Диапазон температуры измеряемой среды, С°	от -20 до +120
Наибольшее давление измеряемой среды, МПа	2,0
Напряжение питания постоянного тока, В	от 15 до 30
Потребляемая мощность, Вт, не более	0,75
Условия эксплуатации:	
- температура окружающей среды, С°	от -20 до +50
- относительная влажность воздуха, %, не более	95
- атмосферное давление, кПа	от 84,0 до 106,7
Габаритные размеры, не более, мм	
- высота	205
- ширина	116
- длина	82
Масса, не более, кг	1,5
Средняя наработка на отказ, ч	20000
Средний срок службы, лет	12

Знак утверждения типа

наносится на вторичный преобразователь расходомера методом наклейки и на титульный лист паспорта типографским способом.

Комплектность средства измерений

Таблица 3 – Комплектность средства измерений

1 7	1	
Наименование	Обозначение	Количество
Расходомер крыльчатый HMP 25-SC- W.PN40.E.V-090	3ав. №№: 01MBU25CF101, 02MBU25CF101	2 шт.
Паспорт		2 экз.
Методика поверки	МП 208-027-2020	1 экз.

Поверка

осуществляется по документу МП 208-027-2020 «ГСИ. Расходомеры крыльчатые HMP 25-SC-W.PN40.E.V-090. Методика поверки», утвержденному Φ ГУП «ВНИИМС» 01.09.2020 г.

Основные средства поверки:

Установка поверочная 3 разряда согласно ГПС (часть 1) утвержденной приказом Росстандарта от 07.02.2018 г. № 256, диапазон воспроизведения объемного расхода воды от 1,5 до 17,0 м 3 /ч, пределы допускаемой относительной погрешности измерений ± 1 %.

Знак поверки наносится в паспорт или свидетельство о поверке средства измерений.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к расходомерам крыльчатым HMP 25-SC-W.PN40.E.V-090

Приказ Росстандарта от 07.02.2018 г. № 256 Об утверждении Государственной поверочной схемы для средств измерения массы и объема жидкости в потоке, объема жидкости и вместимости при статических измерениях, массового и объемного расхода жидкости

Изготовитель

Фирма «KEM Kuppers Elektromechanik GmbH», Германия

Адрес: Liebigstrasse 5, D-85757 Karlsfeld, Germany Тел./факс: +49 8131 59391 0 / +49 8131 58870

Web-сайт: www.kem-kueppers.com E-mail: info@kem-kueppers.com

Заявитель

Общество с ограниченной ответственностью «Сименс Технологии Газовых Турбин» (ООО «Сименс Технологии Газовых Турбин»)

ИНН 7804027534

Адрес: 198323 Ленинградская обл., Ломоносовский р-н, ул. Сименса (Южная часть промзоны Горелово тер.), д. 1

Телефон/факс: 8 (812) 643-73-00 / 8 (812) 643-59-57

Web-сайт: www.siemens.ru/gas-turbines

E-mail: SGTT.ru@siemens.com

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д. 46

Тел./факс: (495)437-55-77 / 437-56-66

Web-сайт: www.vniims.ru E-mail: office@vniims.ru

Аттестат аккредитации Φ ГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.