Приложение № 7 к сведениям о типах средств измерений, прилагаемым к приказу Федерального агентства по техническому регулированию и метрологии от «23» декабря 2020 г. № 2179

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Мультиметры цифровые с системой сбора данных и коммутации DAQ970A, DAQ973A

Назначение средства измерений

Мультиметры цифровые с системой сбора данных и коммутации DAQ970A, DAQ973A (далее по тексту — мультиметры) предназначены для измерений напряжения постоянного и переменного тока, силы постоянного и переменного тока, электрического сопротивления постоянному току, частоты, проверки целостности цепей и диодов, коммутации измерительных сигналов.

Описание средства измерений

Принцип работы мультиметров заключается в преобразовании входного аналогового сигнала с помощью АЦП в цифровой код с низким уровнем шумов, последующей его математической обработке и отображении результатов измерений на дисплее.

Мультиметры собой крейтовую систему, включающую в себя:

- основной блок с встроенным 6,5-разрядным мультиметром и тремя слотами для подключения сменных модулей;
- девять опциональных сменных модулей сбора данных, коммутации и управления: DAQM900A, DAQM901A, DAQM902A, DAQM903A, DAQM904A, DAQM905A, DAQM907A, DAQM908A, DAQM909A.

Мультиметры выпускаются в следующих модификациях: DAQ970A и DAQ973A, которые отличаются наличием интерфейса GPIB у модификации DAQ973A.

Мультиметры могут иметь от 1 до 120 измерительных каналов, коммутируемых мультиплексорами, что позволяет конфигурировать и проводить измерения в каждом канале независимо друг от друга. В каждом отдельном измерительном канале можно настроить различные функции измерений, масштабные коэффициенты, пороги срабатывания, компенсацию смещения, переменное время интегрирования и задержку сигнала. Скорость и время опроса каналов также конфигурируется.

Для проведения измерений мультиметры непосредственно подключают к измеряемой цепи. Для измерения напряжения и силы переменного тока в приборах использованы детекторы истинных среднеквадратических значений. Кроме функции измерений мультиметры могут использоваться в качестве многоканального регистратора данных.

Управление процессами измерений осуществляется при помощи встроенного микропроцессора. Результаты измерений отображаются на дисплее в цифровом виде, а также в виде графиков, гистограмм, трендов. Мультиметры позволяют проводить математическую обработку результатов измерений.

Результаты измерений автоматически снабжаются метками времени и сохраняются во внутренней энергонезависимой памяти мультиметров. Также результаты измерений могут быть переданы на внешний ПК с помощью интерфейсов LAN, USB или GPIB или сохранены на внешнем USB флэш-накопителе. Мультиметры имеют встроенный Web-интерфейс и позволяют проводить настройку и мониторинг результатов измерений с помощью стандартного Интернетбраузера.

Основные узлы мультиметров: входные делители с оптической развязкой, блок нормализации сигналов, АЦП, микропроцессор, устройство управления, клавиатура, дисплей.

Конструктивно мультиметры выполнены в виде моноблока настольного исполнения.

На передней панели мультиметров расположены: выключатель питания, разъем интерфейса USB, дисплей, клавиатура.

На задней панели мультиметров расположены: клемма заземления, разъем сетевого питания, вход внешнего запуска, разъемы интерфейсов LAN, USB, GPIB (для DAQ973A).

Мультиметры имеют ручку для переноски.

Общий вид мультиметров представлен на рисунках 1-4. Общий вид сменных модулей представлен на рисунке 5.

Пломбирование мультиметров цифровых с системой сбора данных и коммутации DAQ970A, DAQ973A не предусмотрено.

Рисунок 1 – Общий вид мультиметров DAQ970A. Вид спереди.

Рисунок 2 – Общий вид мультиметров DAQ973A. Вид спереди.

Рисунок 3 – Общий вид мультиметров DAQ970A. Вид сзади.

Рисунок 4— Общий вид мультиметров DAQ973A. Вид сзади.

Рисунок 5 – Общий вид сменных модулей

Программное обеспечение

Мультиметры функционируют под управлением встроенного программного обеспечения (ПО).

Встроенное ПО (микропрограмма) реализовано аппаратно и является метрологически значимым. Метрологические характеристики приборов нормированы с учетом влияния встроенного ПО. Микропрограмма заносится в программируемое постоянное запоминающее устройство (ППЗУ) приборов предприятием-изготовителем и недоступна для потребителя.

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений – «средний» в соответствии с Р 50.2.077-2014.

Таблица 1 – Идентификационные данные программного обеспечения

таолица т издентификационные данные программного обеспеления					
Идентификационные данные (признаки)	Значение				
Идентификационное наименование ПО	Keysight DAQ970A Firmware				
Номер версии (идентификационный номер ПО)	Не ниже A.02.01-01.00-02.01-00.02- 01.02-00-00				
Цифровой идентификатор ПО	_				

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики в режиме измерений напряжения постоянного тока

Пределы	Пределы допускаемой основной абсолютной	Температурный
измерений	погрешности измерений ¹⁾ , мВ, В	коэффициент ¹⁾ , /°С
100 мВ	±(0,0050+0,0060)	0,0005+0,0005
1 B	$\pm (0,0035+0,0006)$	0,0005+0,0001
10 B	±(0,0030+0,0004)	0,0005+0,0001
100 B	±(0,0040+0,0006)	0,0005+0,0001
300 B	±(0,0040+0,0020)	0,0005+0,0001

Примечание $-^{1)}$ параметры погрешности выражены в % от измеренного значения + % от предела измерений

Таблица 3 – Метрологические характеристики в режиме измерений напряжения переменного тока

Tona				
Пределы	Частота	Пределы допускаемой	Температурный	
измерений		основной абсолютной	коэффициент ¹⁾ , /°С	
		погрешности измерений ¹⁾ ,		
		мВ, В		
100 мВ,	от 3 до 5 Гц включ.	$\pm (0,50+0,02)$	0,010+0,003	
1 B, 10 B,	св. 5 до 10 Гц включ.	±(0,10+0,02)	0,008+0,003	
100 B	св. 10 Гц до 20 кГц включ.	±(0,05+0,02)	0,007+0,003	
	св. 20 до 50 кГц включ.	$\pm (0,07+0,03)$	0,010+0,005	
	св. 50 до 100 кГц включ.	$\pm (0,15+0,05)$	0,060+0,008	
	св. 100 до 300 кГц включ.	±(1,00+0,10)	0,200+0,020	
300 B	от 3 до 5 Гц включ.	±(0,50+0,06)	0,010+0,008	
	св. 5 до 10 Гц включ.	±(0,10+0,06)	0,010+0,008	
	св. 10 Гц до 20 кГц включ.	±(0,05+0,06)	0,010+0,008	
	св. 20 до 50 кГц включ.	±(0,07+0,09)	0,010+0,0012	
	св. 50 до 100 кГц включ.	±(0,15+0,15)	0,060+0,020	
	св. 100 до 300 кГц включ.	±(1,00+0,30)	0,200+0,050	
$\Pi_{\text{DMM-MANUAL}}$ Π_{\text				

Примечание - $^{1)}$ параметры погрешности выражены в % от измеренного значения + % от предела измерений

Таблица 4 – Метрологические характеристики в режиме измерений силы постоянного тока

Пределы	Пределы допускаемой основной абсолютной	Температурный
измерений	погрешности измерений ¹⁾ , мкА, мА, А	коэффициент ¹⁾ , /°С
1 мА	$\pm (0,050+0,005)$	0,0015+0,0005
10 мА	$\pm (0,050+0,020)$	0,0020+0,0020
100 мА	$\pm (0,050+0,005)$	0,0020+0,0005
1 A	$\pm (0,080+0,010)$	0,0050+0,0010
1)		

Примечание - $^{1)}$ параметры погрешности выражены в % от измеренного значения + % от предела измерений

Таблица 5 – Метрологические характеристики в режиме измерений силы переменного тока

Пределы	Частота	Пределы допускаемой	Температурный
измерений		основной абсолютной	коэффициент ¹⁾ , /°С
		погрешности	
		измерений $^{1)}$, мк A , м A , A	
100 мкА, 1 мА,	от 3 Гц до 5 кГц включ.	±(0,10+0,04)	0,015+0,006
10 мА, 100 мА, 1 А	св. 5 до 10 кГц включ.	±(0,10+0,04)	0,030+0,006

Примечание — 1) параметры погрешности выражены в % от измеренного значения + % от предела измерений

Таблица 6 – Метрологические характеристики в режиме измерений электрического

сопротивления постоянному току (2-х и 4-х проводные схемы)

Пределы	Пределы допускаемой основной абсолютной	Температурный
измерений	погрешности измерений ¹⁾ , Ом, кОм, МОм	коэффициент ¹⁾ , /°С
100 Ом	$\pm (0,0060+0,0060)$	0,0006+0,0005
1 кОм	±(0,0040+0,0007)	0,0006+0,0001
10 кОм	$\pm (0,0040+0,0005)$	0,0006+0,0001
100 кОм	±(0,0040+0,0005)	0,0006+0,0001
1 МОм	$\pm (0,0070+0,0005)$	0,0010+0,0002
10 МОм	$\pm (0,025+0,001)$	0,0030+0,0004
100 МОм	±(0,350+0,001)	0,1000+0,0001
1000 МОм	±(3,500+0,001)	1,0000+0,0001

Примечания

Характеристики обеспечиваются при условии использования функции «NULL». Без использования функции «NULL» дополнительная погрешность при 2-х проводной схеме измерений составляет 2 Ом

Таблица 7 – Метрологические характеристики в режиме измерений частоты

Пределы	Частота	Пределы допускаемой	Температурный
измерений		основной абсолютной	коэффициент ¹⁾ , /°С
напряжения		погрешности измерений $^{1)}$,	
переменного		Гц, кГц	
тока			
от 100 мВ до	от 3 до 9,9(9) Гц	±0,0007·F	
300 B ¹⁾	от 10 до 99,9(9) Гц	±0,0003·F	2·10 ⁻⁶ ·F
	от 100 Гц до 0,9(9) кГц	±0,00007·F	2.10 °F
	от 1 до 300 кГц включ.	±0,00007·F	
-			

^{1) -} параметры погрешности выражены в % от измеренного значения + % от предела

 $^{^{1)}-}$ При входном напряжении от 10 до 100 мВ погрешность увеличивается в 10 раз;

F – измеренное значение частоты, Гц, кГц

Таблица 8 – Функциональные характеристики сменных модулей

Модификация	Назначение	Характеристики					
DAQM900A	20-канальный	Скорость коммутации до 450 каналов в					
	мультиплексор общего	секунду.					
	назначения	2-х и 4-х проводные схемы подключения.					
		Встроенная термопара для самодиагностики.					
		Входное напряжение до 120 В					
DAQM901A	20-канальный	Скорость коммутации до 80 каналов в секунду.					
	мультиплексор общего	2-х и 4-х проводные схемы подключения.					
	назначения	Встроенная термопара для самодиагностики.					
		Входное напряжение до 300 В					
DAQM902A	16-канальный	Скорость коммутации до 250 каналов в					
	высокоскоростной	секунду.					
	мультиплексор	2-х и 4-х проводные схемы подключения.					
		Встроенная термопара для самодиагностики.					
		Входное напряжение до 300 В					
DAQM903A	20-канальный	20 независимых однополюсных реле с двумя					
	коммутатор общего	направлениями (SPDT).					
	назначения	Входное напряжение до 300 В.					
		Входная сила тока до 1 А					
DAQM904A	Двухпроводный	32 двухпроводных элемента коммутации.					
	матричный	Одновременное подключение любых входов к					
	переключатель 4×8	любым выходам.					
		Входное напряжение до 300 В.					
		Входная сила тока до 1 А					
DAQM905A	Двойной 4-канальный	Входное сопротивление 50 Ом.					
	радиочастотный	Полоса пропускания до 2 ГГц					
	мультиплексор с						
D 4 0 1 50 0 7 4	сопротивлением 50 Ом						
DAQM907A	Многофункциональный	Два восьмиразрядных порта ввода/вывода					
	модуль	цифровых данных.					
		Суммирующий счетчик импульсов частотой до 100 кГц.					
		Два аналоговых выхода ±12 В или ±24 мА					
		постоянного тока					
DAQM908A	40-канальный	Скорость коммутации до 100 каналов в					
	несимметричный	секунду.					
	мультиплексор	40 однопроводных элементов коммутации.					
		Встроенная термопара для самодиагностики.					
		Входное напряжение до 300 В					
DAQM909A	4-канальный 24-х	Одновременная работа 4-х каналов.					
	битный регистратор	Частота дискретизации до 800 кГц.					
	данных	Память на канал: от 16·106 до 48·106 выборок.					
		Входное напряжение (размах): 18 В (36 В в					
		дифференциальном режиме)					

Таблица 9 – Поддержка сменными модулями функций мультиметра

Функция мультиметра	Модификация								
	DAQM900A	DAQM901A	DAQM902A	DAQM903A	DAQM904A	DAQM905A	DAQM907A	DAQM908A	DAQM909A
Измерение напряжения									
постоянного и переменного	да	да	да	нет	нет	нет	нет	да	да
тока									
Измерение силы									
постоянного и переменного	нет	да	нет						
тока									
Измерение электрического									
сопротивления	ПО	да	по	нет	нет	нет	нет	ПО	нет
постоянному току (2-х	да	да	да	нст	нст	нсі	нст	да	нст
проводная схема)									
Измерение электрического									
сопротивления	ПО	да	по	нет	нет	нет	нет	нет	нет
постоянному току (4-х	да	да	да	нст	нст	нсі	нст	нст	нст
проводная схема)									
Измерение частоты	да	да	да	нет	нет	нет	нет	да	нет

Таблица 10 – Основные технические характеристики

Наименование характеристики	Значение
Параметры электрического питания:	
- напряжение переменного тока, В	от 100 до 240
- частота переменного тока, Гц	50/60/400
Габаритные размеры, мм, (длина × ширина × высота):	
- основной блок	374×254,4×103,6
- сменные модули	315×92×20
Масса, кг:	
- основной блок	4,1
- сменные модули	0,3
Нормальные условия измерений:	
- температура окружающего воздуха, °С	от +18 до +28
- относительная влажность воздуха, %	80
Рабочие условия измерений:	
- температура окружающего воздуха, °С	от 0 до +55
- относительная влажность воздуха, %	80 при +40 °C; 50 при +55 °C
Средний срок службы, лет	10
Средняя наработка на отказ, ч	10 000

Знак утверждения типа

наносится на лицевую панель приборов способом наклейки и на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

Таблица 11 – Комплектность средства измерений

Наименование	Обозначение	Количество
Мультиметр цифровой с		
системой сбора данных и	DAQ970A или DAQ973A	1 шт.
коммутации		
	DAQM900A, DAQM901A, DAQM902A,	
Сменные модули	DAQM903A, DAQM904A, DAQM905A,	по заказу 1)
	DAQM907A, DAQM908A, DAQM909A	
Кабель сетевой	ı	1 шт.
Руководство по эксплуатации	_	1 экз.
Методика поверки	МП 206.1-040-2020	1 экз.
Примечание -1 опция		

Поверка

осуществляется по документу МП 206.1-040-2020 «ГСИ. Мультиметры цифровые с системой сбора данных и коммутации DAQ970A, DAQ973A. Методика поверки», утвержденному Φ ГУП «ВНИИМС» 28.02.2020 г.

Основные средства поверки: калибраторы многофункциональные Fluke 5700A, Fluke 5720A с усилителем Fluke 5725A (регистрационный номер в Федеральном информационном фонде № 52495-13); генераторы сигналов произвольной формы 33210A, 33220A (регистрационный номер в Федеральном информационном фонде № 62209-15).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные документы, устанавливающие требования к мультиметрам цифровым с системой сбора данных и коммутации DAQ970A, DAQ973A

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 14014-91 Приборы и преобразователи измерительные цифровые напряжения, тока, сопротивления. Общие технические требования и методы испытаний

Изготовитель

Компания «Keysight Technologies Malaysia Sdn. Bhd», Малайзия Адрес: Bayan Lepas Free Industrial Zone, 11900, Penang, Malaysia Телефон (факс): +60-04-643-0611 (+60-04-641-5091)

Заявитель

Общество с ограниченной ответственностью «Кейсайт Текнолоджиз» (ООО «Кейсайт Текнолоджиз»)

Адрес: 115054, г. Москва, Космодамианская наб., д. 52, стр. 3

Телефон (факс): +7 495 797 3900 (+7 495 797 3901) Web-сайт: http://www.keysight.com/main/home.

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»).

Адрес: 119361, г. Москва, ул. Озерная, д. 46.

Телефон (факс): +7 (495) 437-55-77 (+7 (495) 437-56-66)

E-Mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 29.03.2018 г.