Приложение № 23 к сведениям о типах средств измерений, прилагаемым к приказу Федерального агентства по техническому регулированию и метрологии от «27» ноября 2020 г. № 1912

# ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система коммерческого учета выбросов с дымовыми газами энергоблоков №1 и №2 Казанской ТЭЦ-1

### Назначение средства измерений

Система коммерческого учета выбросов с дымовыми газами энергоблоков №1 и №2 Казанской ТЭЦ-1 (далее – система), предназначена для:

- непрерывных автоматических измерений массовой концентрации загрязняющих веществ оксида азота (NO), диоксида азота (NO<sub>2</sub>), оксида углерода (CO), объемной доли кислорода (O<sub>2</sub>), диоксида углерода (CO<sub>2</sub>) -и метана (CH<sub>4</sub>), а также параметров (температура, абсолютное давление, скорость потока) газовых выбросов;
- сбора, обработки, визуализации, хранения полученных данных, представления результатов в различных форматах;
- передачи в программно-технический комплекс автоматизированной системы управления технологическим процессом (ПТК АСУ ТП) текущей и архивной информации о содержании, массовых и валовых выбросах вредных веществ в дымовых газах;
  - расчета и учета массовых и валовых выбросов загрязняющих веществ.

#### Описание средства измерений

Принцип действия системы основан на следующих методах измерения:

- 1) для определяемых компонентов NO, NO<sub>2</sub>, CO, CO<sub>2</sub> -электрохимический;
- 2) для определяемого компонента О<sub>2</sub> циркониевый датчик;
- 3) для определяемого компонента СН<sub>4</sub> термокаталитический;
- 4) для скорости и температуры термокорреляционный;
- 5) для давления тензорезистивный.

Система включает в себя измерительные каналы, состоящие из следующих элементов: устройство отбора и подготовки газовой пробы, первичные измерительные преобразователи (газоанализаторы, датчики), устройство сбора, обработки, накопление, хранение, отображение и передачу информации о параметрах отходящих газов для непрерывного контроля.

Система состоит из 2-х уровней:

- нижний уровень: контрольно-измерительные приборы для измерений параметров отходящих газов и измерительные комплексы анализа проб газа;
- верхний уровень: система коммерческого учета (многофункциональный комплекс телеметрии МКТ-Ш-С-СИ(СА) v. Есо), в состав которой входит встроенное АРМ (операторская сенсорная панель).

Оборудование нижнего уровня выполняет следующие функции:

- непрерывное измерение концентраций компонентов отходящего газа в млн<sup>-1</sup> NO, NO<sub>2</sub>, CO:
- непрерывное измерение параметров отходящих газов абсолютного давления в кПа, температуры в °C, скорости в м/с, содержания кислорода  $O_2$  % об. и метана  $CH_4$  в млн<sup>-1</sup>.

Верхний уровень (обеспечивает автоматический сбор, диагностику и автоматизированную обработку информации по анализу дымовых (отходящих) газов в сечении газохода, а также обеспечивает интерфейс доступа к этой информации. На этом уровне происходит автоматический пересчет на основе данных, полученных от оборудования нижнего уровня, и вычисление следующих показателей:

- пересчет значений NO, NO<sub>2</sub>, CO из млн⁻¹ в мг/м³ при условиях 0 °C, 101,3 кПа, сухой газ:
- расчет значений фактического ( ${\rm M}^3/{\rm c}$ ) и приведенного к условиям 0 °C и 101,3 кПа расхода дымовых газов ( ${\rm HM}^3/{\rm c}$ ), а также расхода дымовых газов, рассчитанного на "сухой газ;
- − расчет массового и валового выброса NO, NO<sub>2</sub>, CO в дымовом газе (г/с и т/год, соответственно);
- усреднение за 20 минут массовых выбросов NO, NO₂, CO, г/с.
- расчет объемной доли паров воды на основе измерений содержания кислорода, состава подаваемого на сгорание газа и состава подаваемого на сгорание воздуха для системы контроля отходящих газов.

Связь между оборудованием нижнего и верхнего уровней осуществляется по токовому интерфейсу от 4 до 20 мА и интерфейсу RS-485 (Modbus RTU). Передача сигналов диагностики осуществляется посредством дискретных сигналов типа «сухой контакт».

Встроенный APM (верхний уровень) обеспечивает отображение в реальном времени значений измеряемых и вычисляемых параметров, а также диагностическую информацию с возможностью формирования отчетов за произвольно заданный период.

Передача данных от многофункционального комплекса телеметрии по каналам связи и представление информации (данных) на APM осуществляется без искажений передаваемой информации.

Нижний уровень включает в себя следующие средства измерений:

- газоанализатор КГА-8ЕС (регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 55953-13);
- датчик давления Метран-150 модели TA (регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 32854-13);
- измеритель расхода и скорости газового потока ИС-14.М (регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 65860-16).

Термохолодильник ТХ-410 используется в качестве вспомогательного оборудования пробоподготовки для приведения параметров пробы на входе газоанализатора к допустимым значениям (удаление из газовой смеси влаги путем ее охлаждения и осущения).

Пробоподготовка газовой смеси к анализу осуществляется методом холодной экстрак-

Пломбирование не предусмотрено.

Общий вид комплектов системы, вид дисплея приведены на рисунках 1-7.



Рисунок 1 – Общий вид газоанализатора КГА-8ЕС

Рисунок 2 – Общий вид датчика давления

Рисунок 3 — Общий вид измерительных датчиков измерителя скорости и расхода газового потока ИC-14.M



Рисунок 4 — Общий вид аналитического блока измерителя скорости и расхода газового потока  ${
m IC}\text{-}14.{
m M}$ 

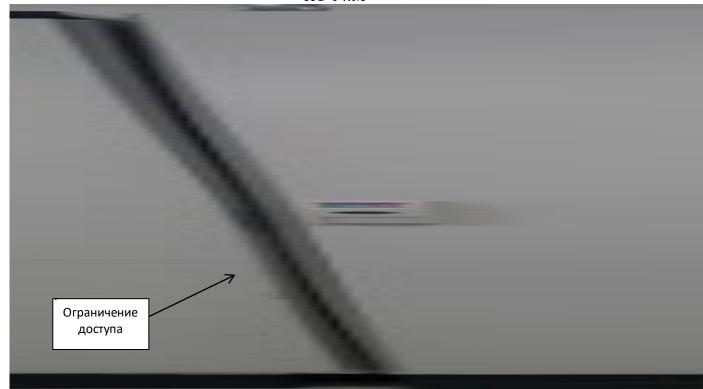



Рисунок 5 – Общий вид многофункционального комплекса телеметрии



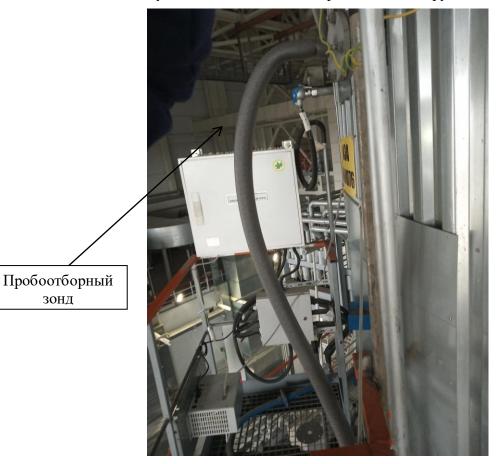



Рисунок 6 - Общий вид измерительного оборудования

Рисунок 7 - Общий вид пробоотборной линии

#### Программное обеспечение

зонд

Система имеет прикладное ПО многофункционального комплекса телеметрии МКТ-Ш-С-СИ(СА) v. Есо, которое осуществляет следующие функции:

- прием, регистрация данных о параметрах отходящего газа.
- отображение на экране измеренных мгновенных значений концентрации определяемых компонентов и значений параметров газового потока;
- автоматический расчет объемной доли воды и массового выброса (г/с) загрязняющих веществ;
  - архивация (сохранение) вышеуказанных измеренных и расчетных данных;
  - визуализация процесса на дисплее;
- контроль состояния значений параметров, формирование предупреждающих и аварийных сигналов;
  - обмен данными между смежными системами;
  - автоматическая самодиагностика состояния технических средств, устройств связи;
- выполнение функций системного обслуживания администрирование системы (контроль и управление полномочиями пользователей, переконфигурирование при модернизации системы).

Влияние встроенного ПО учтено при нормировании метрологических характеристик системы. Уровень защиты – «средний» по Р 50.2.077-2014.

Идентификационные данные программного обеспечения приведены в таблице 1.

Таблица 1 - Идентификационные данные программного обеспечения

| Идентификационные данные (признаки)          | Значения      |
|----------------------------------------------|---------------|
| Идентификационное наименование ПО            | Программа СПК |
| Номер версии (идентификационный номер) ПО    | -             |
| Цифровой идентификатор ПО                    | FF8224B7      |
| Алгоритм вычисления цифрового идентификатора | CRC32         |

## Метрологические и технические характеристики

Таблица 2 — Метрологические характеристики газоаналитических каналов системы (с устройством отбора и подготовки пробы)

| Измерительный канал                   | Диапазон<br>показаний              | Диапазон измерений объемной доли $^{1)}$ | Пределы допускаемой основно погрешности <sup>2)</sup>   |                    |
|---------------------------------------|------------------------------------|------------------------------------------|---------------------------------------------------------|--------------------|
| (определяемый компонент)              | объемной доли                      |                                          | абсолютной                                              | относи-<br>тельной |
| Оксид азота                           | от 0 до 1000                       | от 0 до 100 млн <sup>-1</sup><br>включ.  | ±10 млн <sup>-1</sup>                                   | -                  |
| NO                                    | млн <sup>-1</sup>                  | св. $100$ до $1000$ млн $^{-1}$          | _                                                       | $\pm 10~\%$        |
| Диоксид азо-<br>та NO <sub>2</sub>    | от 0 до 20<br>млн <sup>-1</sup>    | от $0$ до $20$ млн $^{-1}$               | ±3 млн <sup>-1</sup>                                    | -                  |
| Оксид угле-                           | от 0 до 2000                       | от 0 до 200 млн <sup>-1</sup><br>включ.  | ±20 млн <sup>-1</sup>                                   | _                  |
| рода СО                               | млн <sup>-1</sup>                  | св. $200$ до $2000$ млн $^{-1}$          | _                                                       | $\pm 10~\%$        |
| Диоксид уг-<br>лерода СО <sub>2</sub> | от 0 до 20 % (об.)                 | от 0 до 5 % (об.)<br>включ.              | ±0,5 % (об.)                                            | _                  |
| 1                                     | ,                                  | св. 5 до 20 % (об.)                      | _                                                       | $\pm 10~\%$        |
| Vианорон О.                           | от 0 до 21 % (об.)                 | от 0 до 5 % (об.)<br>включ.              | ±0,2 % (об.)                                            | _                  |
| Кислород О2                           | 01 0 д0 21 70 (00.)                | св. 5 до 21 % (об.)                      | ±(0,1375+0,0125-С <sub>вх</sub> ) <sup>3)</sup> % (об.) | _                  |
| Метан СН <sub>4</sub> <sup>4)</sup>   | от 0 до 10000<br>млн <sup>-1</sup> | от 1000 до 10000<br>млн <sup>-1</sup>    | _                                                       | ±25 %              |

<sup>1)</sup> Номинальная цена единицы наименьшего разряда измерительных каналов:

NO, NO<sub>2</sub> CO, CH<sub>4</sub> 1 млн<sup>-1</sup>; CO<sub>2</sub> 0,1 % (об.), O<sub>2</sub> 0,01 % (об.).

Таблица 3 – Метрологические характеристики газоаналитических каналов системы

| Наименование характеристики                                                 | Значение |
|-----------------------------------------------------------------------------|----------|
| Предел допускаемой вариации показаний, в долях от пределов допускаемой      | 0,2      |
| основной погрешности                                                        |          |
| Пределы допускаемой дополнительной погрешности вызванной изменением         | ±0,3     |
| атмосферного давления от 84 до 106,7 кПа (от 630 до 800 мм рт. ст.) на каж- |          |
| дые 3,3 кПа (25 мм рт. ст.) от давления, при котором определялась основная  |          |
| погрешность, в долях от основной погрешности                                |          |

<sup>2)</sup> При нормальных условиях измерений.

<sup>&</sup>lt;sup>3)</sup> Где  $C_{BX}$  – измеренное значение объемной доли, % (об.).

<sup>4)</sup> Термокаталитический датчик.

## Продолжение таблицы 3

| Наименование характеристики                                                        | Значение       |
|------------------------------------------------------------------------------------|----------------|
| Пределы допускаемой дополнительной погрешности от изменения темпера-               |                |
| туры окружающей среды на каждые 10 °C от номинального значения тем-                | ±1,0           |
| пературы, при которой определялась основная погрешность, в долях от ос-            | ±1,0           |
| новной погрешности                                                                 |                |
| Пределы дополнительной погрешности, вызванной влиянием неизмеряемых                |                |
| компонентов в анализируемой газовой смеси, в долях от основной погреш-             | $\pm 0,2$      |
| ности                                                                              |                |
| Время прогрева, мин, не более                                                      | 15             |
| Предел допускаемого времени установления выходного сигнала (Т <sub>0,9Д</sub> ), с | 100            |
| Нормальные условия измерений:                                                      |                |
| - температура окружающего воздуха, °С                                              | от +15 до +25  |
| - относительная влажность окружающего воздуха, %                                   | от 30 до 80    |
| - диапазон атмосферного давления, кПа                                              | от 98 до 104,6 |

Таблица 4 — Метрологические характеристики газоаналитических каналов системы в условиях эксплуатации

| Измери-                  | Диапазон                | Диапазоны измерений  |                             | Пределы допускаемой по-                         |            |
|--------------------------|-------------------------|----------------------|-----------------------------|-------------------------------------------------|------------|
| тельный ка-              | показаний               |                      |                             | грешности в условиях эксплуатации <sup>1)</sup> |            |
| нал (опре-               | объемной                | ~ ~                  |                             | -                                               | ·          |
| деляемый                 | доли, млн <sup>-1</sup> | объемной             | массовой концен-            | абсолютная,                                     | относи-    |
| компонент)               |                         | доли, млн $^{-1}$    | трации, $^{2)}$ мг/м $^{3}$ | $MЛH^{-1} (M\Gamma/M^3)$                        | тельной, % |
|                          |                         | от 0 до 100          | 0 120                       | ±25                                             |            |
| Оксид                    | от 0 до 1000            | включ.               | от 0 до 130 включ.          | $(\pm 30)$                                      | -          |
| азота<br>(NO)            | ого до 1000             | св.100 до 1000       | св.130 до 1300              | -                                               | ±25        |
| Диоксид                  | от 0 до 20              | от 0 до 12<br>включ. | от 0 до 25 включ.           | ±3<br>(±6)                                      | -          |
| азота (NO <sub>2</sub> ) |                         | св.12 до 20          | св.25 до 40                 | -                                               | ±25        |
| Оксид                    | от 0 до 2000            | от 0 до 80<br>включ. | от 0 до 100 включ.          | ± 20<br>(±25)                                   | _          |
| углерода<br>(CO)         |                         | св. 80 до 2000       | св. 100 до 2500             | _                                               | ± 25       |

 $<sup>^{1)}</sup>$  В соответствии с Приказом Минприроды России № 425 от 07.12.2012 г)

 $<sup>^{2)}</sup>$  Пересчет значений массовой концентрации загрязняющих веществ C из мг/м $^3$  в объемную долю X в млн $^{-1}$ , проводят по формуле: X = C·V<sub>m</sub>/M, где M — молярная масса компонента, г/моль, V<sub>m</sub> — молярный объем газа-разбавителя — азота или воздуха, равный 22,4 при условиях (0 °C и 101,3 кПа в соответствии с РД 52.04.186-89), дм $^3$ /моль.

Таблица 5 — Метрологические характеристики измерительных каналов параметров газового потока в условиях эксплуатации

| Измерительный канал                    | Единицы<br>измерений | Диапазон<br>измерений <sup>8)</sup> | Пределы допускаемой погрешности                       |
|----------------------------------------|----------------------|-------------------------------------|-------------------------------------------------------|
| Changam, had about Haraka              | 11/2                 | от 2 до 5 включ.                    | $\pm (0.2 / V)^{1)} \cdot 100 \% $ (отн.)             |
| Скорость газового потока               | м/с                  | св. 5 до 50                         | ±3 % (отн.)                                           |
| Расход газового потока <sup>2)</sup>   | м <sup>3</sup> /с    | от 2,5 до 628                       | $\pm (\delta_{\rm v}^{3)} + 0.5) \% ({ m oth.})^{4)}$ |
| Температура газового потока            | °C                   | от 0 до +300 5)                     | ±3 °С (абс.)                                          |
| Абсолютное давление                    | кПа                  | от 0 до 160                         | ±1 % (прив.) <sup>6)</sup>                            |
| Объемная доля паров воды $(H_2O)^{7)}$ | % (об.)              | от 0 до 10 включ.<br>св. 10 до 30   | ± 25 % (прив.)<br>±25 % (отн.)                        |

 $<sup>^{1)}</sup>$  V – скорость газового потока, м/с.

Таблица 6 – Основные технические характеристики

| Наименование характеристики                                                                                                      | Значение       |
|----------------------------------------------------------------------------------------------------------------------------------|----------------|
| Напряжение питания от сети переменного тока частотой (50 $\pm$ 1) $\Gamma$ ц, В                                                  | от 207 до 253  |
| Средняя наработка на отказ в условиях эксплуатации, с учетом технического обслуживания, ч (при доверительной вероятности P=0,95) | 24000          |
| Средний срок службы, лет                                                                                                         | 8              |
| Условия окружающей среды (для пробоотборного устройства с зондом и датчиков параметров газа):                                    |                |
| диапазон температуры °С                                                                                                          | от -40 до +40  |
| диапазон атмосферного давления, кПа                                                                                              | от 84 до 106,7 |
| относительная влажность (при температуре не более +35 °C                                                                         |                |
| (без конденсации влаги), не более, %                                                                                             | 95             |

 $<sup>^{2)}</sup>$  Расчетное значение с учетом конструкции измерительного сечения дымовой трубы и скорости газового потока от 2 до 50 м/c.

 $<sup>^{3)}</sup>$   $\delta_{v}$ —пределы допускаемой относительной погрешности измерений скорости газового потока, %.

<sup>&</sup>lt;sup>4)</sup> Пределы допускаемой относительной погрешности измерений расхода газового потока нормированы с учетом погрешности измерений скорости газового потока и площади сечения трубы.

<sup>5)</sup> Для преобразователя термоэлектрического ТХА 008-000, входящего в состав ИС-14.М.

<sup>6)</sup> Приведенные к верхнему пределу диапазона измерений.

<sup>7)</sup> Расчетное значение

<sup>&</sup>lt;sup>8)</sup> Номинальная цена единицы наименьшего разряда измерительных каналов: температуры 0.1 °C, давления 0.1 кПа, скорость 0.01 м/с, расхода 1 м<sup>3</sup>/ч,  $H_2O$  0.1 % (об.).

# Продолжение таблицы 6

| Наименование характеристики                                                                                                                                                                             | Значение                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Условия эксплуатации (в отапливаемом помещении): диапазон температуры, °С относительная влажность (без конденсации влаги), %, не более диапазон атмосферного давления, кПа                              | от +5 до +35<br>95<br>от 84 до 106,7 |
| Параметры анализируемого газа на входе в термохолодильник температура, °C, не более избыточное давление, кгс/см², не более абсолютная влажность, г/м³, не более 130; объемный расход, дм³/мин, не более | +110<br>0,1<br>130<br>1,2            |
| Температура пробоотборного зонда с обогреваемой линией, °C                                                                                                                                              | от +110 до +200                      |

Таблица 9 – Габаритные размеры и масса системы

| Габаритные размеры, мм, не Наименование более                        |       |        | Масса, кг,<br>не более |     |
|----------------------------------------------------------------------|-------|--------|------------------------|-----|
|                                                                      | длина | ширина | высота                 |     |
| Шкаф многофункционального комплекса телеметрии МКТ-Ш-С-СИ(СА) v. Eco | 800   | 600    | 2100                   | 100 |
| Газоанализатор КГА-8ЕС                                               | 400   | 225    | 500                    | 15  |
| Измеритель расхода и скорости газового потока ИС-14.М                |       |        |                        |     |
| Датчик измерительный                                                 | 120   | 120    | 150                    | 4   |
| Блок измерительный                                                   | 300   | 210    | 600                    | 20  |
| Термопара ТХА                                                        | 60    | 60     | 300                    | 2   |
| Датчик давления Метран-150 модели<br>ТА                              | 128   | 100    | 218                    | 1,7 |
| Пробоотборный зонд                                                   | 3000  | 30     | 40                     | 2   |
| Термохолодильник ТХ-410                                              | 305   | 225    | 210                    | 8   |

# Знак утверждения типа

наносится на табличку, закрепленную на дверце шкафа с контроллером методом наклейки и на титульный лист Руководства по эксплуатации типографским методом.

# Комплектность средства измерений

Таблица 7 – Комплектность системы

| Наименование                                                                                           | Обозначение                                                             | Количество, |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------|
|                                                                                                        |                                                                         | шт.         |
| Система коммерческого учета выбросов с дымовыми газами энергоблоков №1 и №2 Казанской ТЭЦ-1 в составе: | Зав. № 02                                                               | 1           |
| Датчик давления Метран-150 модели ТА (с клапанным блоком)                                              | Метран-150ТА1 (0-160кПа)<br>2G 2 1 A M5S5 B4 SC1<br>СПГК.5295.000.00 РЭ | 2           |

Продолжение таблицы 7

| Наименование                                                                                                    | Обозначение                   | Количество, |  |  |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------|-------------|--|--|
| Измеритель расхода и скорости дымовых                                                                           |                               | ШТ.         |  |  |
| газов ИС-14.М (с термопарой ТХА 008-000, воздухонагнетателем и фильтром)                                        | ПГРА 701.000.000 РЭ           | 2           |  |  |
| Газоанализатор КГА-8ЕС (с пробоотборным зондом и влагоотделителем)»                                             | КГ5.422.015 РЭ                | 2           |  |  |
| Термохолодильник TX-410                                                                                         | ИБЯЛ.418316.021 РЭ            | 2           |  |  |
| Многофункциональный комплекс телеметрии «ССофт:Сигнал» («Ssoft:Signal») МКТ-Ш-С-СИ(СА) v. Eco, ООО «СервисСофт» | КТШС.223.001                  | 1           |  |  |
| Программное                                                                                                     | обеспечение:                  |             |  |  |
| Прикладное ПО многофункционального                                                                              | СПК                           | 1           |  |  |
| комплекса телеметрии (шкаф вычислитель), OOO «СервисСофт»                                                       |                               |             |  |  |
| Операционная система Microsoft Windows 7                                                                        | Windows 7 Professional SP1x64 | 1           |  |  |
| Professional SP1x64                                                                                             |                               |             |  |  |
| Документация:                                                                                                   |                               |             |  |  |
| Общее описание системы                                                                                          | 1102-01-1-АК63.ПД             | 1 экз.      |  |  |
| Руководство по эксплуатации                                                                                     | 1102-01-1-АК63.РЭ             | 1 экз.      |  |  |
| Формуляр                                                                                                        | 1102-01-1-АК63.ФО             | 1 экз.      |  |  |
| Ведомость эксплуатационных документов                                                                           | 1102-01-1-АК63.ЭД             | 1 экз.      |  |  |
| Методика поверки                                                                                                | МП-242-2366-2020              | 1 экз.      |  |  |

#### Поверка

осуществляется по документу МП-242-2366-2020 «ГСИ. Система коммерческого учета выбросов с дымовыми газами энергоблоков №1 и №2 Казанской ТЭЦ-1. Методика поверки» утвержденному ФГУП «ВНИИМ им Д.И. Менделеева» 20 марта 2020 г.

Основные средства поверки:

- стандартные образцы состава газовых смесей ГСО 10546-2014 (CO/N<sub>2</sub>, NO/N<sub>2</sub>, NO<sub>2</sub>/N<sub>2</sub>), ГСО 10531-2014 (O<sub>2</sub>/N<sub>2</sub>, CO<sub>2</sub>/N<sub>2</sub>, CH<sub>4</sub>/воздух) в баллонах под давлением;
- комплекс переносной измерительный КПИ (регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 69364-17) или средства измерений и вспомогательные устройства в соответствии с МИ «М-МВИ-276-17 «Методика измерений массовой концентрации диоксида серы и окислов азота в промышленных выбросах», регистрационный номер ФР.1.31.2017.27953 от 01.11.2017 г. (спектрофотометр серии UV модель UV-1800, регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 19387-08);
- генератор влажного газа эталонный «Родник-4М» (регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 48286-11) или средства измерений и вспомогательные устройства в соответствии с МИ «М-МВИ-277-17. Методика измерений массовой концентрации паров воды в промышленных выбросах» регистрационный номер  $\Phi$ P.1.31.2018.30255 (весы лабораторные электронные с пределами допускаемой абсолютной погрешности  $\pm 15$  мг в диапазоне взвешивания от 0,2 до 600 г, например, МЛ-06-1 (регистрационный номер 60183-15);
- калибратор давления портативный Метран-517 (регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 39151-12);
- термостат жидкостный серии «TEPMOTECT» (регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 39300-08);

- термометр сопротивления эталонный ЭТС-100 (регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 19916-10);
- рабочие эталоны единицы скорости воздушного потока в соответствии с Государственной поверочной схемой, утвержденной Приказом Росстандарта от 25.11.2019 г. № 2815;
- калибратор электрических сигналов СА71 (регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 53468-13),
  - поверочный нулевой газ (ПНГ) азот газообразный особой чистоты 1-го или 2-го сорта в баллоне под давлением по ГОСТ 9293-74.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

## Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

# Нормативные и технические документы, устанавливающие требования к системе коммерческого учета выбросов с дымовыми газами энергоблоков №1 и №2 Казанской ТЭЦ-1

Приказ Минприроды России № 425 от 07.12.2012 «Об утверждении перечня измерений, относящихся к сфере государственного регулирования обеспечения единства измерений и выполняемых при осуществлении деятельности в области охраны окружающей среды, и обязательных метрологических требований к ним, в том числе показателей точности измерений»

ГОСТ Р 50759-95 Анализаторы газов для контроля промышленных и транспортных выбросов. Общие технические условия

ГОСТ Р ИСО 10396-2006 Выбросы стационарных источников. Отбор проб при автоматическом определении содержания газов

ГОСТ 17.2.4.02-81 Охрана природы. Атмосфера. Общие требования к методам определения загрязняющих веществ

Приказ Росстандарта от 14.12.2018 г. № 2664 Об утверждении Государственной поверочной схемы для средств измерений содержания компонентов в газовых и газоконденсатных средах

Приказ Росстандарта от 25.11.2019 г. № 2815 Об утверждении Государственной поверочной схемы для средств измерений скорости воздушного потока

ГОСТ 8.558-2009 ГСИ. Государственная поверочная схема для средств измерений температуры

Приказ Росстандарта № 2900 от 06.12.2019 г. Об утверждении Государственной поверочной схемы для средств измерений абсолютного давления в диапазоне  $1 \cdot 10^{-1} - 1 \cdot 10^7$  Па

ГОСТ Р 8.960-2019 Государственная система обеспечения единства измерений. Наилучшие доступные технологии. Метрологическое обеспечение автоматических измерительных систем для контроля вредных промышленных выбросов. Основные положения

ГОСТ Р 8.958-2019 Государственная система обеспечения единства измерений. Наилучшие доступные технологии. Автоматические измерительные системы для контроля вредных промышленных выбросов. Методы и средства испытаний

ГОСТ Р 8.959–2019 Государственная система обеспечения единства измерений. Наилучшие доступные технологии. Автоматические измерительные системы для контроля вредных промышленных выбросов. Методика поверки

Техническая документация изготовителя

#### Изготовитель

Общество с ограниченной ответственностью «СервисСофт Инжиниринг»,

(ООО «СервисСофт Инжиниринг»

ИНН 7106515108

Юридический адрес: 119048, г. Москва, ул. Усачева, д. 35, строение 1, помещение III, ком.

28

Адрес: 300004, г. Тула, ул. Щегловская засека, д. 30

Телефон/факс: (4872) 70-05-82 E-mail: ecometeo@ssoft24.com

## Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научно-

исследовательский институт метрологии им. Д.И. Менделеева» Адрес: 190005, Россия, Санкт-Петербург, Московский пр., 19

Телефон: (812) 251-76-01 Факс: (812) 713-01-14 Web-сайт: www.vniim.ru E-mail: info@vniim.ru

Регистрационный номер RA.RU.311541 в Реестре аккредитованных лиц в области обеспече-

ния единства измерений Росаккредитации.