Приложение № 35 к перечню типов средств измерений, прилагаемому к приказу Федерального агентства по техническому регулированию и метрологии от «2» ноября 2020 г. № 1789

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Счетчики электрической энергии многофункциональные трехфазные M2M-3 и M2M-3S

Назначение средства измерений

Счетчики электрической энергии многофункциональные трехфазные M2M-3 и M2M-3S (далее - счетчики) предназначены для измерений активной (АЭ) и реактивной (РЭ) электрической энергии прямого или обратного направления по дифференцированным во времени тарифам в сетях переменного тока промышленной частоты.

Описание средства измерений

Принцип действия счетчиков основан на вычислении действующих значений тока и напряжения, активной энергии, мощности, коэффициента мощности и частоты сети переменного тока по измеренным мгновенным значениям входных сигналов тока и напряжения. Счетчики также обеспечивают отсчет времени, календарной даты и вывод данных на жидкокристаллический индикатор (ЖКИ).

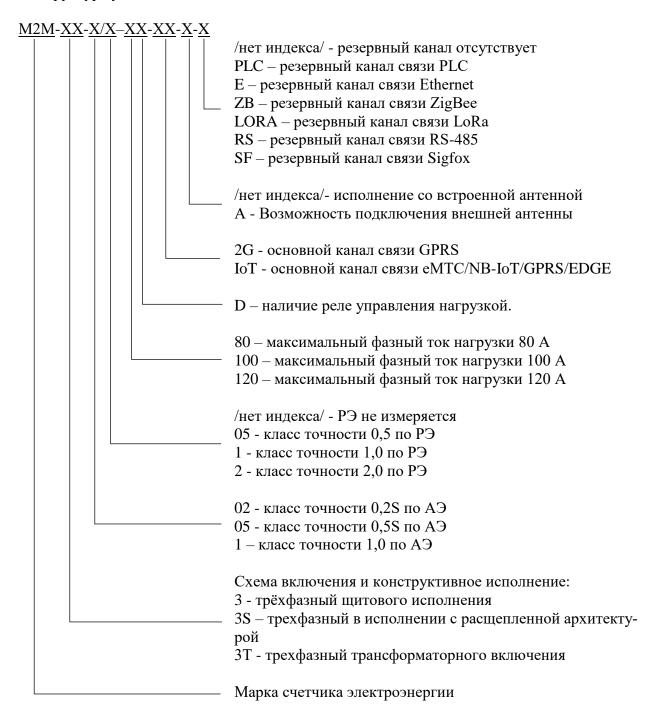
Счетчики могут использоваться как автономно, так и в автоматизированных информационно-измерительных системах учета электрической энергии для передачи измерительных или вычислительных параметров на диспетчерский пункт по контролю, учету и распределению электрической энергии.

Счетчики имеют в своем составе датчики тока и напряжения, внутренние часы, специальный измерительный преобразователь, микроконтроллер, энергонезависимую память, источник питания, жидкокристаллический индикатор для просмотра информации, кнопки управления, световые индикаторы, отключающее реле, оптический порт, основной канал связи: 2G (GPRS) или IoT (eMTC/NB-IoT/GPRS/EDGE); резервный канал связи, активируемый при установке модуля расширения: PLC, Ethernet, ZigBee, LoRa, RS-485, Sigfox.

Конструктивно счетчик выполнен в пластмассовом корпусе. Конструкция счетчика соответствует требованиям ГОСТ 31818.11-2012. Основные клеммы счетчика, предназначенные для подключения к электрической сети, выполнены из электротехнического сплава. Дополнительные контакты клеммной колодки предназначены для цифровых интерфейсов при наличии установленных модулей расширения. На передней панели счетчика расположены кнопки управления режимами индикации дисплея.

Токи и напряжения измеряемой сети через соответствующие зажимы и входные элементы поступают на соответствующие входы измерительного преобразователя, который выполняет преобразование аналоговых сигналов напряжения и тока в цифровые значения этих величин.

Центральный процессор принимает результаты измерений и размещает их в энергонезависимой памяти, поддерживает связь через интерфейсы основного и резервного канала связи, через оптический порт и выводит информацию на дисплей.


Измеренные данные, параметры конфигурации, статусная и иная информация хранятся в энергонезависимой памяти и могут отображаться на жидкокристаллическом индикаторе счетчика.

С помощью программного обеспечения возможно осуществление настройки параметров счетчика, а также считывание данных, при этом связь компьютера со счетчиком может осуществляться как через оптический порт, так и через основной или резервный каналы связи.

Для осуществления мер безопасности и надежности перед настройкой параметров счетчика необходимо пройти процедуру идентификации.

Общий вид общего вида счетчиков, с указанием схем пломбировки от несанкционированного доступа, приведены на рисунках 1 и 2.

Структура условного обозначения

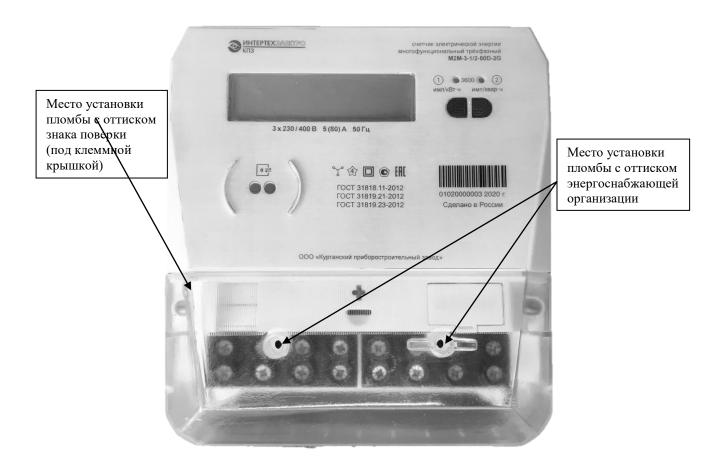


Рисунок 1 — Общий вид счетчиков М2М-3 и схема пломбировки от несанкционированного доступа

Рисунок 2 — Общий вид счетчиков M2M-3S и схема пломбировки от несанкционированного доступа

Программное обеспечение

По своей структуре ПО разделено на метрологически значимую и метрологически незначимую части, имеет контрольные суммы, раздельно рассчитываемые для каждой части, обе части записываются в устройство на стадии производства счетчика, при этом метрологически значимая часть не допускает изменений после калибровочных процедур и выпуска с производства, метрологически незначимая часть может изменяться в целях обновления.

Уровень защиты программного обеспечения «высокий» в соответствии с Р 50.2.077-2014.

Таблица 1 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки) для вариантов исполнений	Значение
Идентификационное наименование ПО	Метрологически значимая часть ПО KPZ_pwrm_metrology
Номер версии (идентификационный номер) ПО	не ниже 1.0.0.0
Цифровой идентификатор ПО	-
Алгоритм вычисления цифрового идентификатора ПО	CRC32

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

Наименование характеристики	Значение
Классы точности:	
- для счетчиков активной и реактивной энергии:	
 по активной энергии ГОСТ 31819.21-2012 	1
 по реактивной энергии ГОСТ 31819.23-2012 	2
Номинальное напряжение Uном, В	57,7 (100); 230 (380)
Рабочий диапазон напряжений, В	3 x (96-265)/(166-460)
Базовый ток I_6 (максимальный $I_{\text{макс}}$) ток, A	5
Номинальный ток $I_{\text{ном}}$ (максимальный ток $I_{\text{макс}}$), А	10; 80; 100; 120

Продолжение таблицы 2

Стартовый ток, А	
- ГОСТ 31819.21-2012	
- класс точности счетчика 1	$0{,}004\cdot I_{6}$
- ГОСТ 31819.23-2012	
- класс точности счетчика 2	$0.004 \cdot I_{6}$
Рабочий диапазон частоты сети, Гц	50±2,5
Погрешность хода часов, с	±1

Таблица 3 – Основные технические характеристики

Значение
3600
3600
0,01
4
10 (2)
10
4
36
365
от 1 до 60 мин
365
500/5000
1
IP51 (IP54)
1200
195×175×62
от -40 до +70
от 40 до 80
от 70 до 106
2
262000

Знак утверждения типа

наносится на панель счетчика лазерной гравировкой (или другим способом, не ухудшающим качества), на титульный лист паспорта и руководства по эксплуатации типографским способом.

Комплектность средства измерений

Таблица 4 – Комплектность средства измерений

Наименование	Обозначение	Количество
Счетчик электрической энергии трехфазный многофункциональный	M2M-3 и M2M-3S	1 шт.
Руководство по эксплуатации	КРZ.01.004.РЭ	1 экз.
Паспорт	КРΖ.01.003.ПС	1 экз.
Методика поверки	РТ-МП-7178-551-2020	1 экз.

Поверка

осуществляется по документу РТ-МП-7178-551-2020 «ГСИ. Счетчики электрической энергии многофункциональные трехфазные M2M-3 и M2M-3S. Методика поверки», утвержденному ФБУ «Ростест-Москва» 28 апреля 2020 г.

Основные средства поверки:

- система переносная поверочная PTS 3.3C (регистрационный номер в Федеральном информационном фонде 60751-15);
- установки для проверки электрической безопасности GPI-725 (регистрационный номер в Федеральном информационном фонде 19971-00);
- приемник временной синхронизации NV08C-CSM-N24M (регистрационный номер в Федеральном информационном фонде 63278-16).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

Знак поверки, в виде оттиска поверительного клейма и пломбы, наносится в паспорт и на корпус счетчика при первичной поверке, и на свидетельство о поверке при периодической поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к счетчикам электрической энергии многофункциональным трехфазным M2M-3 и M2M-3S

ГОСТ 31818.11-2012 Аппаратура для измерения электрической энергии переменного тока. Общие требования. Испытания и условия испытаний. Часть 11. Счетчики электрической энергии

ГОСТ 31819.21-2012 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 21. Статические счетчики активной энергии классов точности 1 и 2

ГОСТ 31819.23-2012 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии (в части счетчиков реактивной энергии классов точности 1 и 2)

ТУ 26.51.63-001-42874687-2020 Счетчики электрической энергии однофазные многофункциональные M2M-1 и M2M-1S, трехфазные M2M-3, M2M-3S и M2M-3T. Технические условия

Изготовитель

Общество с ограниченной ответственностью «Курганский приборостроительный завод» (ООО «КПЗ»)

ИНН 7708369158

Адрес: 107045, г. Москва, Просвирин переулок, д. 4, этаж 2, каб. 2110

Адрес деятельности: 640003, г. Курган, д. 3, стр. 4, пом. 231

Телефон (факс): +7 (495) 660-97-14

Web-сайт: www.kpsz.ru E-mail: info@kpsz.ru

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве и Московской области»

(ФБУ «Ростест-Москва»)

Адрес: 117418, г. Москва, Нахимовский проспект, д. 31

Телефон: +7 (495) 544-00-00

E-mail: info@rostest.ru Web-сайт: www.rostest.ru

Регистрационный номер RA.RU.310639 в Реестре аккредитованных лиц в области обеспечения единства измерений Росаккредитации.