Федеральное государственное унитарное предприятие Всероссийский научно-исследовательский институт метрологической службы (ФГУП «ВНИИМС»)

УТВЕРЖДАЮ

Система измерительная для стендовых испытаний главных редукторов вертолетов СИГР-2 Методика поверки

СТ720-019.01 МП

СОДЕРЖАНИЕ

	Стр
1 Введение	3
2 Операции поверки	4
3 Средства поверки	5
4 Требования безопасности	5
5 Условия поверки	6
6 Подготовка к поверке	6
7 Проведение поверки	6
8 Оформление результатов поверки	10
Приложение А - Функциональные схемы поверки измерительных каналов (ИК)	12

1 ВВЕДЕНИЕ

Настоящая методика поверки (МП) устанавливает порядок проведения и оформления результатов поверки системы измерительной для стендовых испытаний главных редукторов вертолетов СИГР-2 (далее – система) и устанавливает методику ее первичной и периодической поверок.

Система предназначена для измерений крутящего момента силы, частоты вращения, избыточного давления рабочей жидкости, расхода рабочей жидкости, уровня рабочей жидкости, виброускорения, напряжения и силы переменного тока, температуры и формирования на основе полученных данных сигналов управления сложными технологическими процессами и объектами, а также для регистрации и отображения результатов измерений и расчетных величин.

Производство единичное, заводской № 02.

Состав измерительных каналов (ИК) системы приведен в описании типа средства измерений. Перечень ИК приведен в технической документации на систему.

Система состоит из следующих уровней:

- а) первичные измерительные преобразователи (ПИП);
- б) вторичной электрической части ИК (ВИК);

Метрологические характеристики (МХ) и основные технические характеристики системы и ее измерительных компонентов приведены в описании типа средства измерений.

Система подлежит покомпонентной (поэлементной) поверке:

- 1) каждый ИК системы условно подразделяют на ПИП и ВИК;
- 2) проверяют наличие действующих свидетельств о поверке (или отметок о поверке в эксплуатационной документации) на все ПИП, входящие в состав ИК системы;
 - 3) проводят экспериментальную проверку погрешностей ВИК;
 - 4) принимают решение о годности каждого отдельного ИК.

Результаты проверки каждого ИК системы считаются положительными, если:

- ПИП имеют действующее свидетельство о поверке (либо отметку о поверке в эксплуатационной документации);
 - погрешность ВИК не превышает допускаемых значений в условиях поверки.

Допускается проведение поверки отдельных ИК в соответствии с письменным заявлением владельца системы с обязательным указанием информации об объёме проведённой поверки в перечне поверенных ИК, являющемся неотъемлемой частью свидетельства о поверке системы.

ИК системы, прошедшие поверку с отрицательным результатом, выводятся из эксплуатации и не включаются в перечень поверенных ИК, являющийся неотъемлемой частью свидетельства о поверке системы.

Периодическую поверку системы выполняют в процессе эксплуатации системы.

После ремонта системы, аварий, если эти события могли повлиять на метрологические характеристики ИК, а также после замены ее измерительных компонентов проводят первичную поверку системы. Допускается проводить поверку только тех ИК, которые подверглись указанным выше воздействиям.

Интервал между поверками системы – 1 год.

2 ОПЕРАЦИИ ПОВЕРКИ

2.1 При проведении поверки должны выполнять операции, указанные в таблице 1. Таблица 1

		Проведен	ние операции
Наименование операции	№ пункта МП	первичная поверка (после ремонта)	периодическая поверка
Внешний осмотр	7.1	да	да
Опробование и проверка системы	7.2	да	да
Проверка МХ ВИК системы	7.3	да	да
Проверка МХ ВИК крутящего момента силы	7.3.1	да	да
Проверка МХ ВИК частоты вращения	7.3.2	да	да
Проверка МХ ВИК расхода рабочей жидкости	7.3.3	да	да
Проверка МХ ВИК избыточного давления рабочей жидкости и воздуха	7.3.4	да	да
Проверка МХ ВИК температуры	7.3.5	да	да
Проверка МХ ВИК силы переменного тока	7.3.6		
Проверка МХ ВИК напряжения переменного тока	7.3.7	да	да
Проверка МХ ВИК виброускорения	7.3.8	да	да
Проверка МХ ВИК уровня рабочей жидкости	7.3.9	да	да
Проверка контрольной суммы исполняемого кода (цифрового идентификатора программного обеспечения (ПО))	7.4	да	да

3 СРЕДСТВА ПОВЕРКИ

3.1 Средства поверки приведены в таблице 2.

Таблица 2

аолица 2			
Номер пункта	Наименование рабочих эталонов или вспомогательных средств поверки,		
$M\Pi$	номер документа, регламентирующего технические требования к рабочим		
	эталонам или вспомогательным средствам. Разряд по государственной		
	поверочной схеме и (или) метрологические и основные технические		
	характеристики		
	Калибратор промышленных процессов универсальный АКИП-7301:		
	- диапазон воспроизведения силы постоянного тока от 0,001 мА до 20 мА,		
7.3.1, 7.3.4,	пределы допускаемой абсолютной погрешности воспроизведения силы		
7.3.6, 7.3.7,	постоянного тока (I) \pm (0,0002·I + 3 е.м.р.), мА		
7.3.9	- диапазон воспроизведения напряжения постоянного тока от 0 до 10 В,		
	пределы допускаемой абсолютной погрешности воспроизведения		
	напряжения постоянного тока (U) \pm (0,0002·U + 10 е.м.р.), В		
	Генератор сигналов специальной формы ГСС-05: диапазон частот от 100		
7.3.2, 7.3.3,	мкГц до 5 МГц, пределы допускаемой абсолютной погрешности установки		
7.3.8	частоты		
	$(F) \pm (5 \cdot 10^{-6} \Gamma_{\text{U}} \cdot F + 1 \text{мк} \Gamma_{\text{U}})$		
725	Магазин сопротивлений Р4831: диапазон воспроизведения сопротивления		
7.3.5	постоянному току от 0,01 Ом до 10 кОм, класс точности 0,02		
	Вспомогательные средства поверки		
	Измеритель комбинированный «TESTO 175-H1»: диапазон измерения		
	температуры от -20 до +55 °C, предел абсолютной погрешности измерения		
	температуры ±0,4 °C; диапазон измерения относительной влажности от 5 до 95		
5.1	%, предел абсолютной погрешности измерения относительной влажности ±2		
3.1	% .		
	Барометр-анероид БАММ-1: диапазон измерения атмосферного давления от		
	80 до 106 кПа, предел основной допускаемой погрешности измерений		
	атмосферного давления: ±200 Па		
	Вспомогательное оборудование		
	Кабель для поверки ИК момента СТ630.000.07.000		
	Кабель для поверки ДР и IU СТ720.00.14.000		
	Кабель для поверки IU СТ730.00.14.000		
	Кабель для поверки ДВ СТ720.00.16.000		
	Кабель питания генератора тест-сигнала СТ720.00.21.000		
	Генератор тест-сигнала СТ720.00.20.000		
	Кабель для поверки ИК температуры СТ720.81.00.000		
	Transferration Provides Provided Transferration From Francisco		

- 3.2 При проведении поверки допускается применять другие средства измерений, удовлетворяющие по точности и диапазону измерений требованиям настоящей методики.
 - 3.3 При поверке должны использоваться средства измерений утвержденных типов.
- 3.4 Используемые средства поверки должны быть поверены в соответствии с требованиями приказа Минпромторга России № 1815 от 02.07.2015 г. и иметь действующее свидетельство о поверке (знак поверки).
- 3.5 Средства поверки должны быть внесены в рабочее помещение не менее чем за 12 часов до начала поверки.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1 При проведении поверки необходимо соблюдать требования техники безопасности, предусмотренные «Правилами технической эксплуатации электроустановок потребителей» и

- «ПОТ Р М-016-2001. РД 153-34.0-03.150-00. Межотраслевыми Правилами по охране труда (Правила безопасности) при эксплуатации электроустановок». ГОСТ 12.2.007.0-75, ГОСТ Р 12.1.019-2009, ГОСТ 12.2.091-2002 и требования безопасности, указанные в технической документации на применяемые эталоны и вспомогательное оборудование.
- 4.2 Любые подключения приборов проводить только при отключенном напряжении питания системы.

ВНИМАНИЕ! На открытых контактах клеммных колодок системы напряжение опасное для жизни – $220~\mathrm{B}$.

- 4.3 К поверке допускаются лица, изучившие руководство по эксплуатации (РЭ) на систему, знающие принцип действия используемых средств измерений и прошедшие инструктаж по технике безопасности (первичный и на рабочем месте) в установленном в организации порядке.
- 4.4 К поверке допускаются лица, освоившие работу с используемыми средствами поверки, изучившие настоящую МП и имеющие достаточную квалификацию.
- 4.5 Лица, участвующие в поверке системы, должны проходить обучение и аттестацию по технике безопасности и производственной санитарии при работе в условиях её размещения.

5 УСЛОВИЯ ПОВЕРКИ

5.1 При проведении поверки должны соблюдаться следующие условия:

температура окружающего воздуха, °С (К) относительная влажность воздуха при температуре 25 °С, % атмосферное давление, мм рт. ст. (кПа) напряжение питания однофазной сети переменного тока

от 15 до 25 (от 288 до 298); от 30 до 80:

от 730 до 785 (от 97,3 до 104,6);

от 215,6 до 224,4.

6 ПОДГОТОВКА К ПОВЕРКЕ

6.1 При подготовке к поверке:

при частоте (50±1) Гц, В

- проверить наличие свидетельств (знаков поверки) о поверке средств поверки;
- проверить наличие свидетельств о поверке датчиков крутящего момента (при поверке поэлементным методом), датчиков тахометрических, датчика силы (при поверке поэлементным методом), термометров сопротивления (при поверке поэлементным методом)
 - проверить целостность электрических цепей измерительного канала (ИК);
 - включить питание измерительных преобразователей и аппаратуры системы;
- перед началом поверки измерить и занести в протокол поверки условия окружающей среды (температура, влажность воздуха и атмосферное давление).

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр

- 7.1.1 При внешнем осмотре проверить:
- отсутствие механических повреждений;
- исправность органов управления (четкость фиксации положения переключателей и кнопок);
 - отсутствие нарушений экранировки линий связи;
 - отсутствие обугливания изоляции на внешних токоведущих частях системы;
 - отсутствие неудовлетворительного крепления разъемов;
 - заземление стойки управления системы;
 - наличие товарного знака изготовителя и заводского номера системы.
- 7.1.2 Результаты осмотра считать положительными, если выполняются вышеперечисленные требования. В противном случае поверка не проводится до устранения выявленных недостатков.

7.2 Опробование и проверка системы

- 7.2.1 При опробовании системы необходимо:
- включить систему, подав напряжение питания на все ее компоненты; запустить ΠO Гарис.
- 7.2.2 Результаты опробования считать положительными, если ПО Гарис запускается и в

окне «По текущим А и В» отображается информация с действующими значениями измеряемых величин.

- 7.2.3 Для проверки каждого ИК системы выполняют операции в следующей последовательности:
- 1) Проводят проверку наличия действующего свидетельства о поверке (или отметки о поверке в эксплуатационной документации) ПИП.
- 2) Проводят экспериментальную проверку погрешности ВИК системы по соответствующей методике. Методики проверки ВИК, в зависимости от типа ИК, приведены в п. 7.3 настоящего документа.
- 7.2.4 Результаты проверки ИК системы считаются положительными, если ПИП, входящий в состав проверяемого ИК, имеет действующее свидетельство о поверке (либо отметку о поверке в эксплуатационной документации), а ВИК прошел экспериментальную проверку погрешности с положительным результатом.
- 7.2.5 Если в процессе проверки обнаруживают ПИП, имеющий свидетельство о поверке (или отметку о поверке в эксплуатационной документации) с истекшим сроком действия, то ИК системы, в состав которого входит такой ПИП, признают прошедшим поверку с отрицательным результатом.

7.3 Проверка МХ ВИК системы

7.3.1 Проверка МХ ВИК измерения крутящего момента силы

Проверка МХ ВИК измерения крутящего момента силы проводят в изложенной ниже последовательности:

7.3.1.1 Собрать функциональную схему для проверки МХ ВИК измерений крутящего момента силы, согласно рисунку 1 Приложения А.

Подключить калибратор АКИП-7301 ко входам «2», «4», «6» усилителя MGCplus с помощью кабеля для поверки ИК момента СТ630.000.07.000 из состава ЗИП системы.

- 7.3.1.2 Включить компьютер с предустановленным ПО: MSOffice, Гарис.
- 7.3.1.3 Запустить ПО Гарис.
- 7.3.1.4 Открыть таблицу датчиков. В строке поверяемого ИК нажать кнопку «Градуировка».
- 7.3.1.5 Для каждой точки измерения ј из таблицы 3 (для диапазона измерений от 0 до 4000 H·м) / из таблицы 4 (для диапазона измерений от 0 до 10000 H·м):
- установить на калибраторе АКИП-7301 значение генерируемой силы постоянного тока I_i , соответствующее значению крутящего момента силы N_i ;
- измеренное системой значение крутящего момента силы X_j из окна «По текущим A и B» записать в протокол поверки (если показания измеряемого значения не стабильные, то в качестве измеренного значения записывается значение, максимально отклоняющееся от номинального);
- рассчитать абсолютную погрешность Δ_{j} измерений крутящего момента силы по формуле:

$$\Delta_{i} = X_{i} - N_{i} \tag{1}$$

- рассчитать приведенную погрешность γ_j измерений крутящего момента силы по формуле:

$$\gamma_{\rm j} = \frac{\Delta_{\rm j}}{N_{max}} \cdot 100\% \tag{2}$$

Таблица 3

Точка	Заданное	Номинальное	Измеренное	Абсолютная	Приведенная
измерения,	калибратором	значение	системой	погрешность	погрешность
j	значение силы	крутящего	значение	∆ј, Н∙м	γ _j , %
	постоянного	момента силы	крутящего		
	электрического	N _j , Н∙м	момента		
	тока І _ј , мА		силы Хј, Н м		
1	4	0			
2	6	500			
3	8	1000			
4	10	1500			
5	12	2000			
6	14	2500			
7	16	3000			
8	18	3500			
9	20	4000			

Точка	Заданное	Номинальное	Измеренное	Абсолютная	Приведенная
измерения,	калибратором	значение	системой	погрешность	погрешность
j	значение силы	крутящего	значение	Δј, Н∙м	γ _j , %
	постоянного	момента силы	крутящего		
	электрического	N _j , Н∙м	момента		
	тока І _ј , мА		силы X _j , Н·м		
1	4	0			
2	6	1250			
3	8	2500			
4	10	3750			
5	12	5000			
6	14	6250			
7	16	7500			
8	18	8750			
9	20	10000			

7.3.1.6 ВИК считают прошедшим поверку, если в каждой из проверяемых точек выполняется неравенство

- для точек j=1,2,3,4,5 $|\gamma_j|$ < $|\gamma_{\rm T}|$, где $\gamma_{\rm T}$ – пределы допускаемой приведенной погрешности ВИК для диапазонов измерений от 0 до 2000 Н·м и от 0 до 4000 Н·м, нормируемые в технической документации.

Для точек j=6,7,8,9: $|\Delta_j|$ < $|\Delta_T|$, где Δ_T — пределы допускаемой абсолютной погрешности ВИК для диапазона измерений св. 2000 до 4000 Н·м и св. 5000 до 10000 Н·м, нормируемые в технической документации.

7.3.2 Проверка МХ ВИК частоты вращения

Проверка МХ ВИК частоты вращения проводят в изложенной ниже последовательности:

7.3.2.1 Собрать функциональную схему для проверки МХ ВИК частоты вращения, согласно рисунку 1 Приложения А.

Генератор ГСС-05 подключить с помощью кабеля для поверки ДР и IU СТ720.00.14.000 из состава ЗИП системы к разъёму платы МЭД-1/АР17.

7.3.2.2 Включить компьютер с предустановленным ПО: MSOffice, Гарис.

- 7.3.2.3 Запустить ПО Гарис.
- 7.3.2.4 Открыть таблицу датчиков. В строке поверяемого ИК нажать кнопку «Градуировка».
- 7.3.2.5 Зубчатое колесо на валу имеет 101 зуб. За один оборот тахометрический датчик МЭД-1 формирует 101 импульс, соответственно для 10 оборотов частота сигнала на выходе датчика МЭД-1 составит, Гц:

$$f = 10 \cdot 101 / 60 = 16,833$$

- 7.3.2.6 Для каждой точки измерения ј из таблицы 5 (для диапазона измерений от 10 до $3000~\Gamma$ ц) / из таблицы 6 (для диапазона измерений от 10 до $4000~\Gamma$ ц):
- установить на генераторе ГСС-05 (параметры воспроизводимого сигнала: размах напряжения 5 В, смещение 2,5 В) значение частоты переменного тока Fj, соответствующее значению частоты вращения Сj;
- измеренное системой значение частоты вращения H_j из окна «По текущим A и B» записать в протокол поверки (если показания измеряемого значения не стабильные, то в качестве измеренного значения записывается значение, максимально отклоняющееся от номинального);
 - рассчитать относительную погрешность измерений частоты вращения δ_j по формуле:

$$\delta_{\mathbf{j}} = \frac{H_{\mathbf{j}} - C_{\mathbf{j}}}{C_{\mathbf{j}}} \cdot 100\% \tag{3}$$

Таблица 5

Точка измерения, ј	Заданное генератором значение частоты переменного тока F_j ,	Номинальное значение частоты вращения С _j , об/мин	Измеренное системой значение частоты вращения Н _і , об/мин	Относительная погрешность δ_j ,
1	16,833	10		
2	84,167	50		
3	168,333	100		
4	252,500	150		
5	336,667	200		
6	420,833	250		
7	1683,333	1000		
8	3366,667	2000		
9	5050,000	3000		

Таблица 6

Точка измерения, ј	Заданное генератором значение частоты переменного тока F_j ,	Номинальное значение частоты вращения С _j , об/мин	Измеренное системой значение частоты вращения Н _j , об/мин	Относительная погрешность б _ј ,
1	16,833	10		
2	84,167	50		
3	168,333	100		
4	252,500	150		
5	336,667	200		
6	420,833	250		
7	1683,333	1000		
8	3366,667	2000		
9	5050,000	3000		
10	6733,333	4000		

- 7.3.2.7 ВИК считают прошедшим поверку, если в каждой из проверяемых точек выполняется неравенство $|\delta_j| < |\delta_{\rm T}|$, где $\delta_{\rm T}$ пределы допускаемой относительной погрешности ВИК, нормируемые в технической документации.
 - 7.3.3 Проверка МХ ВИК расхода рабочей жидкости

Проверка МХ ВИК расхода рабочей жидкости проводят в изложенной ниже последовательности:

7.3.3.1 Собрать функциональную схему для проверки МХ ВИК частоты переменного тока, согласно рисунку 2 Приложения А.

Генератор ГСС-05 подключить с помощью кабеля для поверки ДР и IU СТ720.00.14.000 из состава ЗИП системы к разъёму модуля DSCA45 «DataForth».

- 7.3.3.2 Включить компьютер с предустановленным ПО: MSOffice, Гарис.
- 7.3.3.3 Запустить ПО Гарис.
- 7.3.3.4 Открыть таблицу датчиков. В строке поверяемого ИК нажать кнопку «Градуировка».
 - 7.3.3.5 Для каждой точки измерения і из таблицы 7:
- установить на генераторе ГСС-05 (параметры воспроизводимого сигнала: размах напряжения 250 мВ) значение частоты переменного тока Fj, соответствующее значению расхода рабочей жидкости Rj;
- измеренное системой значение частоты вращения W_j из окна «По текущим A и B» записать в таблицу 7 (если показания измеряемого значения не стабильные, то в качестве измеренного значения записывается значение, максимально отклоняющееся от номинального);
 - рассчитать относительную погрешность измерений частоты вращения δ_{i} по формуле:

$$\delta_{\mathbf{j}} = \frac{W_{\mathbf{j}} - R_{\mathbf{j}}}{R_{\mathbf{j}}} \cdot 100\% \tag{4}$$

Таблица 7

Точка измерения, ј	Заданное генератором значение частоты переменного тока F_j ,	Номинальное значение расхода рабочей жидкости R _j ,	Измеренное системой значение расхода рабочей жидкости W_j , л/мин	Относительная погрешность δ_j ,
Диапазон из	мерений от 105 до 130 л			
1	54,6875	105		
2	57,2917	110		
3	59,8958	115		
4	62,5	120		
5	65,1042	125		
6	67,7083	130		
Диапазон из	мерений от 180 до 240 л.	/мин		
1	250	180		
2	270,833	195		
3	291,667	210		
4	312,5	225		
5	333,333	240		

7.3.3.6 ВИК считают прошедшим поверку, если в каждой из проверяемых точек выполняется неравенство $|\delta_j| < |\delta_{\rm T}|$, где $\delta_{\rm T}$ — пределы допускаемой относительной погрешности ВИК, нормируемые в технической документации.

7.3.4 Проверка МХ ВИК давления

Проверка МХ ВИК давления проводят в изложенной ниже последовательности:

7.3.4.1 Собрать функциональную схему для проверки МХ ВИК давления, согласно рисунку 2 Приложения A.

Подключить калибратор АКИП-7301 к клеммам 4...20 мА (сигнал «-» к клемме «-24 В», сигнал «+» к клемме 4...20 мА) шкафа кроссового 4-20 СТ720.00.43.000 или шкафа кроссового 4-20 СТ720.00.44.000 (в соответствии с текущей конфигурацией ВИК давления) с помощью кабеля для поверки IU СТ730.00.14.000 из состава ЗИП системы в соответствии с поверяемым ВИК.

- 7.3.4.2 Включить компьютер с предустановленным ПО: MSOffice, Гарис.
- 7.3.4.3 Запустить ПО Гарис.
- 7.3.4.4 Открыть таблицу датчиков. В строке поверяемого ИК нажать кнопку «Градуировка».
 - 7.3.4.5 Для каждой точки измерения ј из таблицы 8:
- установить на калибраторе АКИП-7301 значение генерируемой силы постоянного тока I_j , соответствующее значению давления P_i ;
- измеренное системой значение давления Y_j из окна «По текущим A и B» записать в таблицу 8 (если показания измеряемого значения не стабильные, то в качестве измеренного значения записывается значение, максимально отклоняющееся от номинального);
 - рассчитать приведенную погрешность уј измерений давления по формуле:

$$\gamma_{\rm j} = \frac{Y_{\rm j} - P_{\rm j}}{P_{max}} \cdot 100\% \tag{5}$$

Таблица 8

Точка измерения, ј	Заданное калибратором значение силы постоянного электрического тока I _j , мА	Номинальное значение давления Р _ј	Измеренное системой значение давления Y _j	Приведенная погрешность $\gamma_{\rm j}, \%$
Диапазон из	мерений от 0 до 6000 Па			
1	4	0 Па		
2	8	1500 Па		
3	12	3000 Па		
4	16	4500 Па		
5	20	6000 Па		
Диапазон из	мерений от 0 до 0,60 МПа			
1	4	0,00 МПа		
2	8	0,15 МПа		
3	12	0,30 МПа		
4	16	0,45 МПа		
5	20	0,60 МПа		
Диапазон из	мерений от 0 до 10,0 МПа			
1	4	0 МПа		
2	8	2,5 МПа		
3	12	5,0 МПа		
4	16	7,5 МПа		
5	20	10,0 МПа		

7.3.4.6 ВИК считают прошедшим поверку, если в каждой из проверяемых точек выполняется неравенство $|\gamma_j| < |\gamma_\tau|$, где γ_τ – пределы допускаемой приведенной погрешности ВИК, нормируемые в технической документации.

7.3.5 Проверка МХ ВИК температуры

Проверка МХ ВИК температуры проводят в изложенной ниже последовательности:

7.3.5.1 Собрать функциональную схему для проверки МХ ВИК электрического сопротивления, согласно рисунку 3 Приложения А.

Подключить магазин сопротивления ко входам «1...24» шкафа измерительного температуры СТ720.82.00.000 с помощью кабеля для поверки ИК температуры СТ720.81.00.000 из состава ЗИП системы.

7.3.5.2 Включить компьютер с предустановленным ПО: MSOffice, Гарис.

7.3.5.3 Запустить ПО Гарис.

7.3.5.4 Открыть таблицу датчиков. В строке поверяемого ИК нажать кнопку «Градуировка».

7.3.5.5 Для каждой точки измерения і из таблицы 9:

- установить на магазине сопротивления значение сопротивления Mj, соответствующее значению температуры T_i;
- измеренное системой значение температуры Q_i из окна «По текущим A и B» записать в таблицу 9 (если показания измеряемого значения не стабильные, то в качестве измеренного значения записывается значение, максимально отклоняющееся от номинального);
 - рассчитать приведенную погрешность γ_{j} измерения температуры по формуле:

$$\gamma_{\rm j} = \frac{Q_{\rm j} - T_{\rm j}}{T_{max}} \cdot 100\% \tag{6}$$

Таблица 9

Точка измерения, ј	Заданное калибратором значение электрического сопротивления М _j , Ом	Номинальное значение температуры T_{j} , °C	Измеренное системой значение температуры Q _j , °C	Абсолютная погрешность Δ_{j} , °C
Диапазон из	мерений от 0 до 150 °C (50	Μ (α428))		
1	50,00	0		
2	56,42	30		
3	62,84	60		
4	69,26	90		
5	75,68	120		
6	82,10	150		

- 7.3.5.6 ВИК считают прошедшим поверку, если в каждой из проверяемых точек выполняется неравенство $|\gamma_j| < |\gamma_{\rm T}|$, где $\gamma_{\rm T}$ пределы допускаемой приведенной погрешности ВИК, нормируемые в технической документации.
 - 7.3.6 Проверка ВИК силы переменного электрического тока

Проверка МХ ВИК силы переменного электрического тока проводят в изложенной ниже последовательности:

7.3.6.1 Собрать функциональную схему для проверки МХ ВИК силы переменного электрического тока, согласно рисунку 4 Приложения А.

Подключить калибратор АКИП-7301 к преобразователю MCR-SL (сигнал «-» к черному проводу «-3E2», сигнал «+» поочередно к проводам «Т1...Т6»).

- 7.3.6.2 Включить компьютер с предустановленным ПО: MSOffice, Гарис.
- 7.3.6.3 Запустить ПО Гарис.

- 7.3.6.4 Открыть таблицу датчиков. В строке поверяемого ИК нажать кнопку «Градуировка».
 - 7.3.6.5 Для каждой точки измерения і из таблицы 10:
- установить на калибраторе АКИП-7301 значение генерируемой силы постоянного тока Ii, соответствующее значению силы переменного электрического тока ~Ii;
- измеренное системой значение силы переменного электрического тока Y_i из окна «По текущим А и В» записать в таблицу 10 (если показания измеряемого значения не стабильные, то в качестве измеренного значения записывается значение, максимально отклоняющееся от номинального);
 - рассчитать приведенную погрешность γ_j измерений давления по формуле:

$$\gamma_{\rm j} = \frac{Y_{\rm j} - \sim I_{\rm j}}{\sim I_{\rm max}} \cdot 100\% \tag{7}$$

Точка измерения, ј	Заданное калибратором значение силы постоянного электрического тока I _j , мА	Номинальное значение силы переменного электрического тока ~I	Измеренное системой значение силы переменного электрического тока Y _i	Приведенная погрешность $\gamma_{\rm j}, \%$
1	4	0,0 A		
2	8	50,0 A		
3	12	100,0 A		
4	16	150,0 A		
5	20	200,0 A		

7.3.6.6 ВИК считают прошедшим поверку, если в каждой из проверяемых точек выполняется неравенство $|\gamma_i| < |\gamma_{\rm T}|$, где $\gamma_{\rm T}$ – пределы допускаемой приведенной погрешности ВИК, нормируемые в технической документации.

7.3.7 Проверка ВИК напряжения переменного электрического тока

Проверка МХ ВИК напряжения переменного электрического тока проводят в изложенной ниже последовательности:

7.3.7.1 Собрать функциональную схему для проверки МХ ВИК напряжения переменного электрического тока, согласно рисунку 4 Приложения А.

Подключить калибратор АКИП-7301 к преобразователю MCR-VAC (сигнал «-» к черному проводу «-3E2», сигнал «+» поочередно к проводам «V1...V6»).

- 7.3.7.2 Включить компьютер с предустановленным ПО: MSOffice, Гарис.
- 7.3.7.3 Запустить ПО Гарис.
- 7.3.7.4 Открыть таблицу датчиков. В строке поверяемого ИК нажать кнопку «Градуировка».
 - 7.3.7.5 Для каждой точки измерения і из таблицы 11:
- установить на калибраторе АКИП-7301 значение генерируемой силы постоянного тока Іі, соответствующее значению напряжения переменного электрического тока ~Uj;
- измеренное системой значение напряжения переменного электрического тока Y_j из окна «По текущим А и В» записать в таблицу 11 (если показания измеряемого значения не стабильные, то в качестве измеренного значения записывается значение, максимально отклоняющееся от номинального);

- рассчитать приведенную погрешность
$$\gamma_{\rm j}$$
 измерений давления по формуле:
$$\gamma_{\rm j} = \frac{Y_{\rm j} - \sim U{\rm j}}{\sim U_{max}} \cdot 100\% \tag{8}$$

Таблица 11

Точка измерения, ј	Заданное калибратором значение силы постоянного электрического тока I _j , мА	Номинальное значение силы переменного электрического тока ~U	Измеренное системой значение силы переменного электрического тока Y _i	Приведенная погрешность $\gamma_{\rm j}, \%$
1	4	0,0 B		
2	8	62,5 B		
3	12	125,0 B		
4	16	187,5 B		7
5	20	250,0 B		

7.3.7.6 ВИК считают прошедшим поверку, если в каждой из проверяемых точек выполняется неравенство $|\gamma_j|<|\gamma_{\rm T}|$, где $\gamma_{\rm T}-$ пределы допускаемой приведенной погрешности ВИК, нормируемые в технической документации.

7.3.8 Проверка МХ ВИК виброускорения

Проверка МХ ВИК виброускорения проводят в изложенной ниже последовательности:

7.3.8.1 Собрать функциональную схему для проверки МХ ВИК виброускорения, согласно рисунку 5 Приложения A.

Генератор ГСС-05 подключить с помощью кабеля для поверки ДВ СТ720.00.16.000 и генератора тест-сигнала СТ720.00.20.000 из состава ЗИП системы ко входам «15.1...15.8»» усилителя MGCplus.

- 7.3.8.2 Включить компьютер, запустить ПО Гарис, открыть таблицу датчиков.
- 7.3.8.3 Нажать на кнопку «Создать программу испытаний».
- 7.3.8.4 Выбрать вкладку «Настройка».
- 7.3.8.5 В появившемся диалоговом окне «Настройки испытаний» выбрать вкладку «параметры опроса».
 - 7.3.8.6 Поставить галочку напротив поверяемого канала АЦП.
- 7.3.8.7 Выбрать вкладку «Режимы», нажать на кнопку «Добавить режим», в строке названия режима написать «1».
 - 7.3.8.8 В столбце «амплитуда» указать отличную от нуля и положительную величину.
 - 7.3.8.9 В столбце «Частота, Гц» из выпадающего списка выбрать «измерять».
- 7.3.8.10 На вкладке «Сохранение данных» параметр «Длина отрезка, по которому измеряется частота» установить равным 8 с.
 - 7.3.8.11 Закрыть диалоговое окно нажатием кнопки «ОК».
- 7.3.8.12 Поставить галочку перед «Редактирование текста» (Активировалась левая область экрана).
- 7.3.8.13 В активной области переместить курсор вниз и в последней строке написать PLAYBACK REGIM(1, 15000). Это означает установить 1 режим, 15000 циклов.
- 7.3.8.14 Убрать поставленную галочку перед «Редактирование текста», и если команда написана правильно, то в правой области она добавится в виде «Режим «1», а в свойствах 15000 циклов.
 - 7.3.8.15 Нажать на кнопку «Запустить F5».
- 7.3.8.16 Программа предложит сохранить журнал. Сохранить, оставляя за собой право выбора названия журнала. Нажать на кнопку «сохранить».
 - 7.3.8.17 Нажать кнопку «К программе».
- 7.3.8.18 Открыть таблицу датчиков. В строке поверяемого ИК нажать кнопку «Градуировка».
 - 7.3.8.19 Для каждой точки измерения ј из таблицы 12:

- установить на генераторе Γ CC-05 (параметры воспроизводимого сигнала: частота переменного тока 50 Γ ц) значение размаха напряжения переменного тока Uppj, соответствующее значению виброускорения Ri;
- измеренное системой значение виброускорения W_j из окна «По текущим A и В» записать в таблицу 12 (если показания измеряемого значения не стабильные, то в качестве измеренного значения записывается значение, максимально отклоняющееся от номинального);
 - рассчитать относительную погрешность измерений виброускорения δ_i по формуле:

$$\delta_{\rm j} = \frac{W_{\rm j} - R_{\rm j}}{R_{\rm J}} \cdot 100\% \tag{9}$$

Точка измерения, ј	Заданное генератором значение размаха напряжения переменного тока Upp _i , B	Номинальное значение виброускорения $R_{\rm j},{ m g}$	Измеренное системой значение виброускорения W _i , g	Относительная погрешность δ_j ,
1	0,2	1,0		
2	1,0	5,0		
3	2,0	10,0		
4	5,0	25,0		
5	10,0	50,0		~

7.3.8.20 ВИК считают прошедшим поверку, если в каждой из проверяемых точек выполняется неравенство $|\delta_j| < |\delta_{\rm T}|$, где $\delta_{\rm T}$ — пределы допускаемой относительной погрешности ВИК, нормируемые в технической документации.

7.3.9 Проверка МХ ВИК уровня рабочей жидкости

Проверка МХ ВИК уровня рабочей жидкости проводят в изложенной ниже последовательности:

7.3.9.1 Собрать функциональную схему для проверки МХ ВИК силы постоянного тока, согласно рисунку 2 Приложения А.

Подключить калибратор АКИП-7301 к клеммам 4...20 мА (сигнал «-» к клемме «-24 В», сигнал «+» к клеммам 4...20 мА) шкафа кроссового 4-20 СТ720.00.43.000 или шкафа кроссового 4-20 СТ720.00.44.000 (в соответствии с текущей конфигурацией ВИК уровня) с помощью кабеля для поверки IU СТ730.00.14.000 из состава ЗИП системы.

- 7.3.9.2 Включить компьютер с предустановленным ПО: MSOffice, Гарис.
- 7.3.9.3 Запустить ПО Гарис.
- 7.3.9.4 Открыть таблицу датчиков. В строке поверяемого ИК нажать кнопку «Градуировка».
 - 7.3.9.5 Для каждой точки измерения ј из таблицы 13:
- установить на калибраторе АКИП-7301 значение генерируемой силы постоянного тока I_j , соответствующее значению уровня рабочей жидкости L_j ;
- измеренное системой значение уровня O_j из окна «По текущим A и B» записать в таблицу 13 (если показания измеряемого значения не стабильные, то в качестве измеренного значения записывается значение, максимально отклоняющееся от номинального);
- рассчитать приведенную погрешность γ_{j} измерений уровня рабочей жидкости по формуле:

$$\gamma_{\rm j} = \frac{o_{\rm j} - L_{\rm j}}{L_{max}} \cdot 100\% \tag{10}$$

Точка измерения, ј	Заданное калибратором значение силы постоянного электрического тока I _j , мА	Номинальное значение уровня рабочей жидкости L _j , мм	Измеренное системой значение уровня рабочей жидкости О _i , мм	Приведенная погрешность γ_j , %
1	4	0		
2	8	245		
3	12	490		
4	16	735		
5	20	980		

7.3.11.6 ВИК считают прошедшим поверку, если в каждой из проверяемых точек выполняется неравенство $|\gamma_j| < |\gamma_{\rm T}|$, где $\gamma_{\rm T}$ – пределы допускаемой приведенной погрешности ВИК, нормируемые в технической документации.

7.4 Проверка контрольной суммы исполняемого кода (цифрового идентификатора ПО) На ПЭВМ системы запустить файл Garis.exe и открыть окно % «О программе» (меню Справка —> О программе Гарис). Идентификационные наименования отображаются в верхней части окна «О программе».

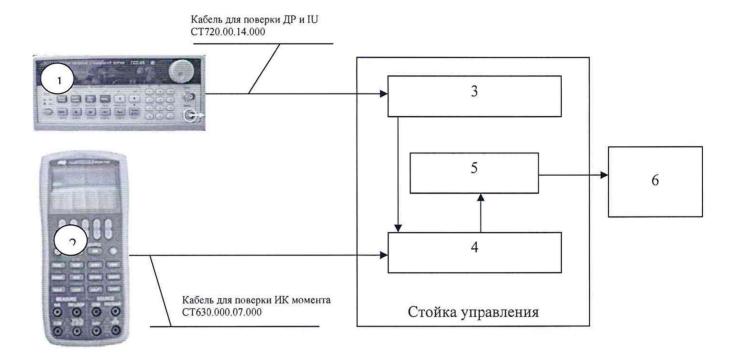
Метрологически значимая часть ПО системы представляет собой:

- модуль GarisGrad.dll фильтрация, градуировочные расчеты;
- модуль GarisAspf.dll вычисление амплитуды, статики, фазы, частоты и других интегральных параметров сигнала;
- модуль GarisInterpreter.dll интерпретатор формул для вычисляемых каналов;
- драйверы платы L780 фирмы L-Card файлы ldevpci.sys, ldevs.sys.

Идентификационные данные (признаки) метрологически значимой части ПО указаны в разделе 17 формуляра.

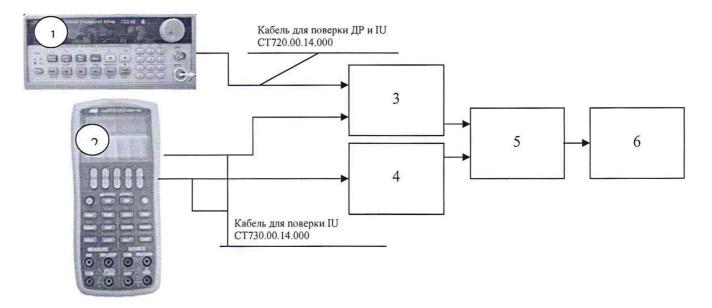
Для вычисления цифрового идентификатора (хеш-суммы) файла метрологически значимого программного компонента использовать данные ПО Гарис, которое само вычисляет хеш-суммы по алгоритму md5.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ


- 8.1 Результаты поверки заносятся в протокол поверки.
- 8.2 По окончанию работ по поверке выписывают свидетельство о поверке системы, оформленное в соответствии с приказом № 1815 от 02.07.2015 г. «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке», с приложением, содержащим список ИК, прошедших проверку с положительным результатом.
- 8.3 При отрицательных результатах проверки отдельных ИК, в случае невозможности их ремонта, эти ИК не допускают к применению, выписывают на них извещение о непригодности, оформленное в соответствии с приказом № 1815 от 02.07.2015 г. «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».

Разработали:

Начальник отдела 201 ФГУП «ВНИИМС» 1 сесее 4.М. Каширкина Инженер 3 кат. отдела 201 ФГУП «ВНИИМС» 1 сецее 4.М. С. Смирнов


СТ780-019.01 МП

Приложение A Функциональные схемы проверки МХ ВИК системы

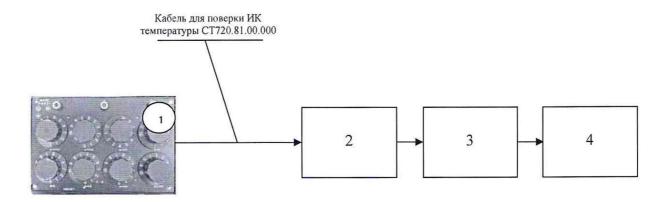

- 1 калибратор АКИП-7301;
- 2 генератор ГСС-05;
- 3 плата МЭД-1/АР17;
- 4 многоканальный измерительный усилитель MGCplus;
- $5 \Pi \ni BM;$
- 6 рабочее место оператора

Рисунок 1 - Функциональная схема для проверки МХ ВИК крутящего момента силы и частоты вращения

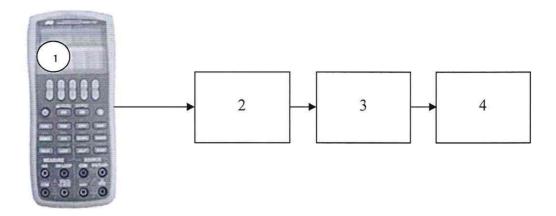

- 1 генератор ГСС-05;
- 2 калибратор АКИП-7301;
- 3 шкаф кроссовый 4 20 СТ720.00.44.000;
- 4 шкаф кроссовый 4 20 СТ720.00.43.000;
- 5 стойка управления;
- 6 рабочее место оператора

Рисунок 2 - Функциональная схема для проверки МХ ВИК давления, расхода и уровня рабочей жидкости

- 1 магазин сопротивлений;
- 2 шкаф измерительный температуры СТ720.82.00.000;
- $3 \Pi \ni BM;$
- 4 рабочее место оператора

Рисунок 3 - Функциональная схема для проверки МХ ВИК температуры

- 1 калибратор АКИП-7301;
- 2 шкаф измерительный тока и напряжения СТ720.91.00.000;
- 3 стойка управления;
- 4 рабочее место оператора

Рисунок 4 - Функциональная схема для проверки МХ ВИК силы и напряжения переменного электрического тока

- 1 генератор ГСС-05;
- 2 генератор тест-сигнала СТ720.00.20.000;
- 3 многоканальный измерительный усилитель MGCplus;
- $4 \Pi \ni BM;$
- 5 рабочее место оператора

Рисунок 5 - Функциональная схема для проверки МХ ВИК виброускорения