Государственная система обеспечения единства измерений

Акционерное общество «Приборы, Сервис, Торговля» (АО «ПриСТ»)

УТВЕРЖДАЮ Главного метролог АО «ПриСТ» А.Н. Новиков «13» марта 2020 г.

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

Осциллографы цифровые серий WaveRunner 8000HDR, MDA 8000HDR

МЕТОДИКА ПОВЕРКИ ПР-03-2020МП

ВВЕДЕНИЕ

Настоящая методика устанавливает методы и средства первичной и периодических поверок осциллографов цифровых серий WaveRunner 8000HDR, MDA 8000HDR, изготавливаемых Teledyne LeCroy, Inc., США.

Осциллографы цифровые серий WaveRunner 8000HDR, MDA 8000HDR (далее по тексту – осциллографы) предназначены для исследования формы и измерения амплитудных и временных параметров электрических сигналов.

Интервал между поверками 1 год.

Периодическая поверка осциллографов в случае их использования для измерений на меньшем числе каналов измерений, по отношению к указанным в разделе «Метрологические и технические характеристики» описания типа, допускается на основании письменного заявления владельца средств измерений, оформленного в произвольной форме. Соответствующая запись должна быть сделана в свидетельстве о поверке приборов.

1 ОПЕРАЦИИ ПОВЕРКИ

Таблица 1 – Операции поверки

тиомици товерии	Номер пункта	Проведение операции при	
Наименование операции	методики	первичной	периодической
	поверки	поверке	поверке
1 Внешний осмотр	7.1	Да	Да
2 Опробование	7.2	Да	Да
3 Проверка идентификационных данных	7.3	Да	Да
программного обеспечения			, ,
4 Определение сопротивления входных каналов осциллографа	7.4	Да	Да
5 Определение относительной погрешности установки коэффициентов отклонения	7.5	Да	Да
6 Определение абсолютной погрешности измерения напряжения постоянного тока	7.6	Да	Да
7 Определение абсолютной погрешности измерения напряжения постоянного тока постоянным смещением	7.7	Да	Да
8 Определение ширины полосы пропускания	7.8	Да	Да
9 Определение времени нарастания переходной характеристики	7.9	Да	Да
10 Определение относительной погрешности частоты внутреннего опорного генератора	7.10	Да	Да
11 Определение абсолютной погрешности установки уровня срабатывания цифрового логического анализатора (только для модификаций с опцией логического анализатора)	7.11	Да	Да

Очередность выполнения пунктов – произвольная. В случае выявления несоответствия требованиям в ходе выполнения любой операции, указанной в таблице 1, поверяемый осциллограф бракуется, поверка прекращается, и на него оформляют извещение о непригодности.

2 СРЕДСТВА ПОВЕРКИ

- 2.1 При проведении поверки должны применяться средства поверки, перечисленные в таблицах 2 и 3.
- 2.2 Допускается применять другие средства поверки, обеспечивающие измерение значений соответствующих величин с требуемой точностью.
- 2.3 Все средства поверки должны быть исправны, поверены и иметь свидетельства (отметки в формулярах или паспортах) о поверке.

Таблица 2 – Средства поверки

	средства поверки		
Номер	Тип средства поверки		
пункта МП	тип средства поверки		
7.4 – 7.11	Калибратор осциллографов Fluke 9500В. Диапазон измерений сопротивления от 10 Ом до 12 МОм. Пределы допускаемой относительной погрешности измерений сопротивления ±0,5 % Диапазон выходного напряжения постоянного тока от 1 мВ до 5 В на нагрузке 50 Ом, от 1 мВ до 200 В на нагрузке 1 МОм. Пределы допускаемой абсолютной погрешности воспроизведения напряжения постоянного тока ±(0,00025·U _{вых} +25 мкВ) В. Время нарастания /среза формируемого импульса (с формирователем 9530) не более 150 пс. Пределы допускаемой относительной погрешности установки частоты сигнала ±2,5·10 ⁻⁵ %.		

Таблица 3 – Вспомогательные средства поверки

Измеряемая	Диапазон	Класс точности,	Тип средства поверки
величина	измерений	погрешность	
Температура	от 0 до +50 °C.	±0,25 °C	Цифровой термометр-гигрометр Fluke 1620A
Давление	от 30 до 120 кПа	±300 Па	Манометр абсолютного давления Testo 511
Влажность	от 10 до 100 %	±2 %	Цифровой термометр-гигрометр Fluke 1620A
Напряжение питающей сети	от 50 до 480 В	±0,2 %	Прибор измерительный
Частота питающей сети	от 45 до 66 Гц	±(0,001·f+0,01)	универсальный параметров электрической сети DMG 800

3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К поверке допускаются лица, изучившие эксплуатационную документацию на поверяемые средства измерений, эксплуатационную документацию на средства поверки и соответствующие требованиям к поверителям средств измерений согласно ГОСТ Р 56069-2018.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1 При проведении поверки должны быть соблюдены требования ГОСТ 12.27.0-75, ГОСТ 12.3.019-80, ГОСТ 12.27.7-75, требования правил по охране труда при эксплуатации электроустановок, утвержденных приказом Министерства труда и социальной защиты Российской Федерации от 24 июля 2013 г № 328H.
- 4.2 Средства поверки, вспомогательные средства поверки и оборудование должны соответствовать требованиям безопасности, изложенным в руководствах по их эксплуатации.

5 УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ

При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха (23 ± 5) °C;
- относительная влажность до 80 %;
- атмосферное давление от 84 до 106 кПа или от 630 до 795 мм рт. ст;
- напряжение питающей сети (220±22) В;
- частота питающей сети (50±0,5) Гц.

6 ПОДГОТОВКА К ПОВЕРКЕ

- 6.1 Перед проведением поверки должны быть выполнены следующие подготовительные работы:
- проведены технические и организационные мероприятия по обеспечению безопасности проводимых работ в соответствии с действующими положениями ГОСТ 12.27.0-75;
- проверить наличие действующих свидетельств поверки на основные вспомогательные средства поверки.
- 6.2 Средства поверки и поверяемый прибор должны быть подготовлены к работе согласно их руководствам по эксплуатации.
- 6.3 Проверено наличие удостоверения у поверителя на право работы на электроустановках с напряжением до 1000 В с группой допуска не ниже III.
- 6.4 Контроль условий проведения поверки по пункту 5 должен быть проведен перед началом поверки.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр.

Перед поверкой должен быть проведен внешний осмотр, при котором должно быть установлено соответствие поверяемого прибора следующим требованиям:

- исправность органов управления, четкость фиксации их положения;
- все разъемы, клеммы и измерительные провода не должны иметь повреждений и должны быть чистыми;
- отсутствие механических повреждений корпуса и ослабления крепления элементов конструкции (определяется на слух при наклонах прибора)

При наличии дефектов поверяемый прибор бракуется и подлежит ремонту.

7.2 Опробование.

Опробование осциллографов проводят путем проверки их на функционирование в соответствии с руководством по эксплуатации.

При отрицательном результате проверки прибор бракуется и направляется в ремонт.

7.3 Проверка идентификационных данных программного обеспечения

Проверка идентификационных данных программного обеспечения осциллографов осуществляется путем вывода на дисплей прибора информации о номере версии программного обеспечения. Вывод информации осуществляется по процедуре, описанной в руководстве по эксплуатации на осциллограф.

Результат поверки считать положительным, если номер версии программного обеспечения соответствует данным, приведенным в таблице 4.

Таблица 4 – Характеристики программного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	XStreamDSO
Номер версии (идентификационный номер ПО)	не ниже 9.0.0.0

7.4 Определение сопротивления входных каналов осциллографа

Определение сопротивления входных каналов осциллографа проводить методом прямого измерения сопротивления калибратором осциллографов Fluke 9500B в следующей последовательности:

- 7.4.1 Подключить калибратор осциллографов Fluke 9500B с использованием формирователя 9530 ко входу 1 осциллографа.
 - 7.4.2 На калибраторе установить режим измерения сопротивления.
- 7.4.3 Включить осциллограф и выполнить сброс на заводские настройки согласно инструкции по эксплуатации.
- 7.4.4 В меню «Утилиты» в разделе «Калибровка» установить режим Calibrate Current State.
- 7.4.5 Провести измерения сопротивления входа осциллографа при настройках, приведенных в таблице 5.
 - 7.4.6 Провести измерения по п.п. 7.4.1 7.4.4 для каждого канала осциллографа.
- 7.4.7 Определить отклонение сопротивления входных каналов осциллографа ΔR от номинального значения по формуле (1):

$$\Delta R = R_{\text{HOM}} - R_{\text{H3M}} \tag{1}$$

где: $R_{\text{ном}}$ — значение сопротивления входного канала, установленного в осциллографе, Ом;

 $R_{\mbox{\tiny H3M}}$ — значение сопротивления входного канала, измеренное калибратором осциллографов Fluke 9500B, Ом.

Результаты поверки считать положительными, если отклонение от номинального сопротивления находится в пределах, приведенных в таблице 5.

Таблица 5 - Определение отклонения сопротивления входных каналов осциллографа от номинальных значений

Установленный коэффициент отклонения, мВ/дел.	Номинальное значение входного сопротивления	Допустимое отклонение от номинального сопротивления, Ом
50 200	50 Ом	±1

7.5 Определение относительной погрешности установки коэффициентов отклонения

Определение относительной погрешности установки коэффициентов отклонения производится с помощью калибратора осциллографов Fluke 9500B с использованием формирователя 9530.

- 7.5.1 Подключить калибратор осциллографов Fluke 9500B с использованием формирователя 9530 ко входу 1 осциллографа.
 - 7.5.2 Органы управления осциллографа устанавливают в следующие положения:
 - канал 1 Включен;
 - связь входа DC 50 Om;
 - ограничение полосы пропускания 20 МГц;
 - тип синхронизации Edge (Фронт);
 - режим измерения Меап (Среднее значение), статистика измерений включена;
 - коэффициент отклонения устанавливается из таблицы 6.
- 7.5.3 Для получения результата измерения произвести считывание среднего значения результата измерения при числе статистки измерений не менее 50.
- 7.5.4 Установить калибратор в режим источника напряжения постоянного тока положительной полярности. Измерения провести при значениях коэффициентов отклонения (K_o), входного сопротивления, выходного напряжения с калибратора, указанных в таблице 6.

- 7.5.5 Установить калибратор в режим источника напряжения постоянного тока отрицательной полярности. Измерения провести при значениях коэффициентов отклонения (K_0), входного сопротивления, выходного напряжения с калибратора, указанных в таблице 6.
- 7.5.6 Определить относительную погрешность установки коэффициентов отклонения δK_o по формуле (2):

$$\delta K_o = \left(\frac{U_+ - U_-}{V_+ - V_-} - 1\right) \cdot 100 \% \tag{2}$$

- где U_+ , U_- измеренные при помощи осциллографа значения напряжения постоянного тока положительной или отрицательной полярности, B;
- $V_+,\ V_--$ установленные на калибраторе значения напряжения постоянного тока положительной или отрицательной полярности, B_-
 - 7.5.7 Повторить измерения по п.п. 7.5.1 7.5.6 для остальных каналов осциллографа.

Таблица 6 – Определение относительной погрешности установки коэффициентов отклонения

Таблица 6 – Оп	ределение относі	ительной погрешности устан	новки коэффициентов отклонения
Коэффициент отклонения		Выходное напряжение с	Пределы допускаемой относительной погрешности
R _{BX} =50 O _M	R _{BX} =1 MO _M	калибратора, В	коэффициентов отклонения, %
	0 0/	+0,006	
2 мВ/дел	2 мВ/дел	-0,006	
5 D/	5 D/	+0,015	
5 мВ/дел	5 мВ/дел	-0,015	
10 P/	10 D/	+0,030	
10 мВ/дел	10 мВ/дел	-0,030	
20 P/	20 P/	+0,06	
20 мВ/дел	20 мВ/дел	-0,06	
50 P/	50 D/	+0,15	
50 мВ/дел	50 мВ/дел	-0,15	
100 - D/	100 P/	+0,300	1
100 мВ/дел	100 мВ/дел	-0,300	±1,5
200 мВ/дел 200 мВ/дел		+0,600	
200 MB/ACII	200 мір/дел	-0,600	
500 мВ/дел	500 мВ/дел	+1,50	
	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-1,50	
1 В/дел	1 В/дел	+3,0	
.,,,	.,,,==	-3,0	
	2 В/дел	+6,0	
	.,,,==	-6,0	
	5 В/дел	+15	
	, ,	-15	
_	10 В/дел	+30	
	10 Б/Дол	-30	

Результаты поверки считать положительными, если полученные значения погрешностей не превышают пределов допускаемой относительной погрешности коэффициентов отклонения, приведенных в таблице 6.

7.6 Определение абсолютной погрешности измерения напряжения постоянного тока

Определение погрешности измерения напряжения проводить с помощью калибратора осциллографов Fluke 9500B с использованием формирователя 9530.

- 7.6.1 Подключить калибратор осциллографов Fluke 9500B с использованием формирователя 9530 ко входу 1 осциллографа.
 - 7.6.2 Органы управления осциллографа установить в следующие положения:
 - канал 1 Включен, связь входа DC 50 Oм;
 - ограничение полосы пропускания 20 МГц;
 - тип синхронизации Edge (Фронт);
 - режим измерения Меап (Среднее значение), статистика измерений включена;
 - коэффициент отклонения устанавливается из таблицы 7.
- 7.6.3 Для получения результатов измерений произвести считывание среднего значения результата измерения при числе статистки измерений не менее 50.
- 7.6.4 Провести измерения при значениях коэффициента отклонения, входного сопротивления, выходного напряжения с калибратора, указанных в таблице 7.
 - 7.6.5 Повторить измерения по п.п. 7.6.1 7.6.4 для остальных каналов осциллографа.

Таблица 7 – Определение абсолютной погрешности измерения напряжения постоянного тока

Коэффициент отклонения		Выходное напряжение с	Пределы допускаемой абсолютной погрешности	
R _{BX} =50 O _M	R _{BX} =1 MO _M	калибратора, В	измерения постоянного напряжения, В	
2 мВ/дел	2 мВ/дел	+0,006	±0,00124	
2 111131 4011	2 11137 4011	-0,006		
5 мВ/дел	5 мВ/дел	+0,015	±0,0016	
5 MB/ ACM	э мы дол	-0,015		
10 мВ/дел	10 мВ/дел	+0,030	$\pm 0,0022$	
то мылдел	то мылдел	-0,030	±0,0022	
20 мВ/дел	20 мВ/дел	+0,06	$\pm 0,0034$	
20 мб/дел	20 мір/дел	-0,06	±0,0034	
50 мВ/дел	50 мВ/дел	+0,15	10.007	
30 мь/дел	30 м Б /дел	-0,15	$\pm 0,007$	
100 vD/707	100xD/202	+0,300	10.012	
100 мВ/дел	100мВ/дел	-0,300	$\pm 0{,}013$	
200 мВ/дел	200 мВ/дел	+0,600	10.025	
200 мв/дел	200 мБ/дел	-0,600	±0,025	
500мВ/дел	500мВ/дел	+1,5	10.061	
300мБ/дел		-1,5	±0,061	
1 В/дел	1 В/дел	+3,0	±0.121	
т в/дел	т Б/дел	-3,0	±0,121	
	2 В/дел	+6,0	10.241	
_	2 Б/дел	-6,0	±0,241	
	5 В/дел	+15	10.601	
	э в/дел	-15	±0,601	
	10 В/дод	+30,0	+1 201	
- 10 В/дел		-30,0	$\pm 1,201$	

Результаты поверки считать положительными, если полученные значения погрешностей не превышают пределов допускаемой абсолютной погрешности, приведенных в таблице 7.

7.7 Определение абсолютной погрешности измерения напряжения постоянного тока постоянным смещением

Определение абсолютной погрешности измерения постоянного напряжения со смещением проводить с помощью калибратора осциллографов Fluke 9500B с использованием формирователя 9530.

- 7.7.1 Подключить калибратор осциллографов Fluke 9500B с использованием формирователя 9530 ко входу 1 осциллографа.
 - 7.7.2 Органы управления осциллографа устанавливают в следующие положения:
 - канал 1 Включен, связь входа DC 50 Oм;
 - ограничение полосы пропускания 20 МГц;
 - тип синхронизации Edge (Фронт);
 - режим измерения Меап (Среднее значение), статистика измерений включена;
 - коэффициент отклонения устанавливается из таблицы 8.
- 7.7.3 В меню канала выбрать функцию «Смещение» и установить сигнал по центральной горизонтальной линии осциллографа.
- 7.7.4 Подать напряжение положительной полярности (U+), значение которого приведено в таблице 8, с калибратора на вход канала 1 осциллографа. Значение напряжения не должно превышать максимально допустимый уровень на входе осциллографа.
- 7.7.5. Произвести установку напряжения смещения, равного по величине выходному напряжению калибратора, но имеющему противоположный знак.
- 7.7.6 Провести измерения заданного постоянного уровня с калибратора при помощи автоматических измерений осциллографа.
- 7.7.7 Определить абсолютную погрешность измерения постоянного напряжения со смещением по формуле (3):

$$\Delta = |\mathbf{U}_{\text{H3M}}| - |\mathbf{U}_{\text{K}}| \tag{3}$$

где $U_{\text{изм}}$ – значение напряжения, измеренное поверяемым осциллографом, B;

 U_{κ} – значение напряжения, установленное на калибраторе, В.

- 7.7.8 Провести измерения по п. 7.7.1 7.7.7 при остальных значениях коэффициента отклонения и значениях уровня постоянного напряжения, включая отрицательные значения, указанных в таблице 8.
- 7.7.9 Провести измерения по п.п. 7.7.1 7.7.8 для остальных каналов осциллографа. При этом неиспользуемые каналы должны быть отключены.
- 7.7.10 Провести измерения по п.п. 7.7.1 7.7.9 при входном сопротивлении каналов 1 МОм.

Таблица 8 - Определение абсолютной погрешности измерения напряжения постоянного тока постоянным смешением

постоянным емещением					
Коэффициент отклонения осциллографа		Установленный уровень постоянного напряжения с калибратора, В		Пределы допускаемой абсолютной погрешности измерения напряжения постоянного тока со смещением, В	
R _{вх} =50 Ом	$R_{\text{BX}}=1 \text{ MOM}$	$R_{\text{BX}}=50 \text{ OM}$ $R_{\text{BX}}=1 \text{ MOM}$		R _{BX} =50 O _M	R _{BX} =1 MO _M
2 мВ/дел	2 мВ/дел	±0,5	±1	±0,00374	±0,00624
5 мВ/дел	5 мВ/дел	±1,4	±2	±0,0086	±0,0116
10 мВ/дел	10 мВ/дел	±2,8	±4	$\pm 0,0162$	$\pm 0,0222$
20 мВ/дел	20 мВ/дел	±4	±6	$\pm 0,0234$	$\pm 0,0334$
-	200 мВ/дел	-	±60		±0,325
-	1 В/дел	-	±100		±0,621
-	10 В/дел	-	±150		±1,951

Результаты поверки считать положительными, если во всех поверяемых точках, абсолютная погрешность измерения не превышает пределов, приведенных в таблице 8.

7.8 Определение полосы пропускания

Определение полосы пропускания осциллографа проводить методом прямого измерения осциллографом синусоидального сигнала, воспроизводимого калибратором осциллографов Fluke 9500B.

- 7.8.1 Подключить калибратор ко входу 1 осциллографа. Все другие каналы должны быть отключены.
 - 7.8.2 Установить на осциллографе:
 - входное сопротивление канала 50 Ом;
 - коэффициент отклонения осциллографа 2 мВ/дел;
 - коэффициент развертки 100 мкс/дел;
 - полоса пропускания Full (Полная).
- 7.8.3 Установить на выходе калибратора синусоидальный сигнал частотой 50 кГц, размах сигнала от 4 до 6 делений по вертикали. Измерить размах сигнала U_{on} при помощи автоматических измерений Amplitude (Амплитуда) осциллографа.
- 7.8.4 Установить на выходе калибратора сигнал с частотой, соответствующей верхней граничной частоте полосы пропускания поверяемого осциллографа.
- 7.8.5 Установить на поверяемом осциллографе величину коэффициента развертки 10 нс/дел.
- 7.8.6 Увеличивать частоту сигнала с калибратора до тех пор, пока размах сигнала на экране осциллографа не станет равным $0.708 \cdot U_{on}$.
- 7.8.7 Записать установленную частоту с дисплея калибратора, которая будет соответствовать частоте полосы пропускания осциллографа.
- 7.8.8 Провести измерения по п.п. 7.8.1 7.8.7 для остальных коэффициентов отклонения осциллографа до 1 В/дел включительно.
 - 7.8.9 Провести измерения по п.п. 7.8.1 7.8.8 для остальных каналов осциллографа.

Результаты поверки считать положительными, если значение полосы пропускания осциллографа не менее значения, приведенного в таблице 9.

Таблица 9 – Полоса пропускания по уровню -3 дБ

Модификации	Полоса пропускания по уровню -3 дБ, МГц
WaveRunner 8038HDR, MDA 8038HDR	300
WaveRunner 8058HDR, MDA 8058HDR	500
WaveRunner 8108HDR, MDA 8108HDR	1000
WaveRunner 8208HDR, MDA 8208HDR	2000

7.9 Определение времени нарастания переходной характеристики

Определение времени нарастания переходной характеристики (ΠX) производить методом прямого измерения путем подачи на вход осциллографа импульса с малым временем нарастания от калибратора осциллографов Fluke 9500B.

- 7.9.1 1 Подключить калибратор ко входу 1 осциллографа Все другие каналы должны быть отключены.
 - 7.9.2 Органы управления осциллографа устанавливают в следующие положения:
 - канал 1 Включен, связь входа DC 50 Oм;
 - полоса пропускания Full (Полная);
 - тип синхронизации Edge (Фронт);
- развертка минимальное значение коэффициента развертки, при котором наблюдается фронт импульса;
 - режим измерения: Rise (Время нарастания), статистика измерений включена;
 - коэффициент отклонения не менее 10 мВ/дел.
- 7.9.3 Установить амплитуду импульса на экране осциллографа не меньше 4 делений по вертикали. Произвести считывание среднего значения результата измерения времени нарастания, при числе статистки измерений не менее 50.
 - 7.9.4 Определить время нарастания переходной характеристики по формуле (4):

$$t_{\text{IIX}} = \sqrt{t_{\text{X}}^2 - t_{\text{O}}^2} \tag{4}$$

где t_X – значение времени нарастания, измеренное поверяемым осциллографом, пс;

- t_0 значение времени нарастания формирователя калибратора (или на выходе генератора), пс.
- 7.9.5 Повторить измерения по п.п. 7.9.1 7.9.5 для коэффициентов отклонения 20 мВ/дел, 50 мВ/дел, 100 мВ/дел, 200 мВ/дел, 500мВ/дел, 1 В/дел.
 - 7.9.6 Повторить измерения по п.п. 7.9.1 7.9.6 для остальных каналов осциллографа.

Таблица 10 – Определение времени нарастания переходной характеристики

Модификации	Допускаемые значения времени нарастания переходной характеристики, пс, не более
WaveRunner 8038HDR, MDA 8038HDR	1000
WaveRunner 8058HDR, MDA 8058HDR	700
WaveRunner 8108HDR, MDA 8108HDR	400
WaveRunner 8208HDR, MDA 8208HDR	235

Результаты поверки считать положительными, если вычисленные по формуле (4) значения времени нарастания не превышают значений, приведенных в таблице 10.

7.10 Определение относительной погрешности частоты внутреннего опорного генератора

Определение относительной погрешности частоты внутреннего опорного генератора проводить методом стробоскопического преобразования с помощью калибратора осциллографов Fluke 9500B.

- 7.10.1 Подключить калибратор осциллографов Fluke 9500B с использованием формирователя 9530 ко входу 1 осциллографа.
 - 7.10.2 Выполнить следующие установки осциллографа:
- канал 1 Включен, связь входа DC 50 Ом, ограничение полосы пропускания выключено;
 - синхронизация: режим авто;
 - режим измерения частота, статистика измерений включена;
 - коэффициент отклонения 100 мВ/дел;
- 7.10.3 Подать на вход осциллографа синусоидальный сигнал с калибратора, частотой $f_{\text{тест}}$ =10,008 МГц. Амплитуду сигнала с калибратора установить не менее 6 делений по вертикальной шкале осциллографа
- 7.10.3 Установить минимальное значение длины памяти осциллографа (в настройках развертки выбрать установки длинны записи и установить 500).
- 7.10.4 Установить коэффициент развертки осциллографа в диапазоне (0,5-2) мс/дел. Регулировкой коэффициента развертки добиться наблюдения на экране осциллографа низкочастотного сигнала.
- 7.10.5 Произвести считывание среднего значения результата измерения частоты при числе статистки измерений не менее 50.

Результаты поверки считать положительными, если измеренная частота низкочастотного сигнала в стробоскопическом эффекте $F_{\text{строб}}$. не превышает 8,025 к Γ ц.

7.11 Определение абсолютной погрешности установки уровня срабатывания цифрового логического анализатора (только для модификаций с логическим анализатором)

- 7.11.1 Определение погрешности проводить с помощью калибратора осциллографов Fluke 9500B, используя логический пробник из комплекта осциллографа в следующей последовательности:
 - 7.11.2 Произвести сброс всех настроек осциллографа.

- 7.11.3 Подключить логический пробник из комплекта осциллографа к разъему логического анализатора на передней панели осциллографа.
- 7.11.4 Включить цифровые каналы в осциллографе, аналоговые каналы должны быть отключены.
- 7.11.5 Выход калибратора подключить к адаптеру, вид которого приведен на рисунке 1. Сигнальный разъем логического пробника, начиная с канала D0 подключить к адаптеру.

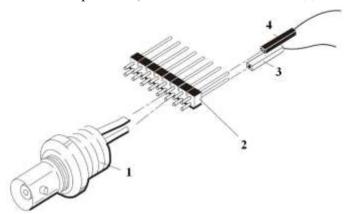


Рисунок 1

где: 1. BNC-разъем (к калибратору)

- 2. Соединительная планка (2 шт.)
- 3. Сигнальный разъем логического пробника
- 4. «Земляной» разъем логического пробника
- 7.11.6 В меню логического анализатора осциллографа установить следующие параметры:
 - тип логики определенный пользователем;
 - порог уровня согласно таблице 11;
 - гистерезис согласно таблице 11.
 - 7.11.7 Задать уровень сигнала с калибратора согласно таблице 11.
- 7.11.8 Плавно увеличивать напряжение на выходе калибратора до значения, при котором канал D0 переходит в состояние устойчивой «логической единицы».
- 7.11.9 Плавно уменьшать напряжение на выходе калибратора до значения $U_{\text{ниж}}$, при котором канал D0 логического анализатора переходит в состояние «логического нуля». Записать измеренное значение напряжения с калибратора $U_{\text{ниж}}$ в таблицу 11.
- 7.11.10 Плавно увеличивать напряжение на выходе калибратора до значения $U_{\text{верх}}$, при котором канал D0 переходит в состояние «логической единицы». Записать измеренное значение напряжения с калибратора $U_{\text{верх}}$ в таблицу 11.
 - 7.11.11 Повторить измерения по п.п. 7.11.5 7.11.10 для остальных цифровых каналов.

Таблица 11 – Определение абсолютной погрешности установки уровня срабатывания

Установленный		Значение	Допускаемые пределы уровня	
	Установленный	выходного	срабатывания	
уровень срабатывания, В	гистерезис, В	напряжения	$U_{\text{верх}}$, B ,	U _{ниж} , В,
сраоатывания, в		калибратора, В	не более	не менее
+10,00	0,1	+10,45	+10,45	+9,55
	1,4	+11,10	+11,10	+8,90
0,00	0,1	+0,15	+0,15	-0,15
0,00	1,4	+0,80	+0,80	-0,80
-10,00	0,1	-9,55	-9,55	-10,45
	1,4	-8,90	-8,90	-11,10

Результаты поверки считать положительными, если измеренные значения уровня срабатывания логического анализатора находятся в пределах, приведенных в таблице 11.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1 При положительных результатах поверки оформляется свидетельство о поверке в соответствии с приказом Минпромторга России от 02.07.2015 № 1815 "Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке".
- 8.2 При отрицательных результатах поверки средство измерений не допускается к дальнейшему применению, знак предыдущей поверки гасится и выдается извещение о непригодности.

Начальник отдела испытаний

СМ С.А. Корнеев