ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Дозатор весовой автоматический дискретного действия FLSmidth

Назначение средства измерений

Дозатор весовой автоматический дискретного действия FLSmidth (далее по тексту – дозатор) предназначен для автоматического дозирования обезвоженного на пресс-фильтрах медного концентрата в биг-бэги.

Описание средства измерений

Принцип действия дозатора основан на преобразовании деформации упругого элемента весоизмерительного тензорезисторного датчика (далее по тексту - датчика), возникающей под действием силы тяжести дозируемого вещества, в аналоговый электрический сигнал, с последующей обработкой сигнала в аналогово-цифровом преобразователе (далее по тексту - АЦП). Далее сигналы поступают в центральный блок устройства управления, где подвергаются аналого-цифровому преобразованию, математической обработке электронными устройствами с дальнейшим определением значения массы взвешиваемого материала.

На основе информации об измеренном значении массы в соответствии с предварительно заданной программой осуществляется автоматическое управление питателем для формирования дозы материала.

Конструктивно дозатор состоит из узла взвешивания и узла управления.

Узел взвешивания состоит из:

-грузоприемного устройства (далее по тексту - ГПУ), выполненного в виде весовой платформы опирающейся на четыре весоизмерительных датчика A951, производства фирмы "PRECIA MOLEN", Франция, и включающего грузовую платформу с роликами, опорную рамную конструкцию с устройством зацепа и раздува мешков, вибрационного устройства для уплотнения материала в биг-бэгах;

-загрузочного устройства в виде накопительного бункера емкостью 15 т;

-ленточного питателя на металлической раме с частотно-регулируемым приводом, управляющим скоростью ленты и задающим производительность питателя (далее по тексту - питатель). Тип заполнения – сверху;

-ленточного конвейера на металлической раме с частотно-регулируемым приводом, управляющим скоростью ленты (далее по тексту - конвейер), на котором установлена шиберная задвижка с помощью которой производится управление загрузочно-разгрузочными процессами взвешиваемого материала.

Узел управления состоит из прибора весоизмерительного i-40PS (регистрационный номер в федеральном информационном фонде по обеспечению единства измерений № 58867-14) (далее по тексту — регистрационный номер), сенсорной панели оператора SIMATIC HNI comf, производства фирмы «Siemens AG», Германия, совмещающей функции показывающего устройства и клавиатуры управления, и контроллера программируемого SIMATIC S7-300 (регистрационный номер № 15772-11), выполняющего функции аналогоцифрового преобразования сигналов, их математической обработки, управления процессом дозирования, хранения параметров настройки и результатов измерений в энергонезависимой памяти в энергонезависимой памяти, передачу информации по цифровым интерфейсам связи.

Электронные устройства размещены в низковольтном шкафу локальной системы управления и электроснабжения;

Дозатор имеет следующие вспомогательные устройства:

- -роликовый конвейер для последующей транспортировки наполненных биг-бэгов с грузоприемного устройства и служащего для накопления тары перед зоной выгрузки;
 - -вибрационное устройство уплотнения материала в биг-бэгах после дозирования;
 - -устройство для отбора проб;

- -инфракрасный фотобарьер установленный в целях безопасности рабочей зоны оператора во время дозирования.
 - -устройство накопления и полуавтоматической подачи паллет;
 - шкаф пневматического управления.

Дозатор оснащен следующими устройствами и функциями в соответствии с ГОСТ 8.610-2012, приведенными в таблице 1.

Таблица 1 – Устройства и функции дозатора ГОСТ 8.610-2012

Устройства и функции	Ссылка на пункт ГОСТ 8.610-2012
Грузоприемное устройство	2.2.1.2
Устройство управления	2.2.1.4
Устройство задания массы дозы	2.2.1.6
Устройство установки нуля	2.2.4
Полуавтоматическое устройство установки нуля	2.2.4.2
Автоматическое устройство установки нуля	2.2.4.3
Устройство начального установления на нуль	2.2.4.4
Устройство слежки за нулем	2.2.4.5
Устройство тарирования (устройство компенсирования массы тары)	2.2.5

Идентификационные данные маркировки наносятся на грузоприемное устройство и на устройство управления.

На маркировочной табличке устройства управления указывается:

- наименование;
- обозначение типа дозатора;
- год изготовления;
- серийный номер дозатора;
- класс точности X(x);
- номинальные минимальная и максимальная дозы (Minfill и Maxfill соответственно);
- параметры электрического питания;
- знак утверждения типа.

На маркировочной табличке грузоприемного устройства указывается:

- наименование производителя;
- обозначение типа грузоприемного устройства;
- год изготовления;
- серийный номер;
- максимальная нагрузка (Мах).

Общая схема дозатора представлена на рисунке 1. Обозначение мест нанесения знака поверки и место пломбировки представлены на рисунках 2-3.

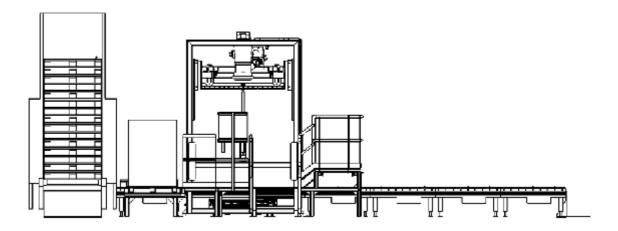


Рисунок 1 - Общая схема дозатора

Рисунок 2 – Общий вид устройства управления, места нанесения знака поверки

Рисунок 3 – Общий вид Место пломбирования контроллера

Программное обеспечение

Программное обеспечение (далее по тексту - ПО) дозатора имеет метрологически значимую и метрологически незначимую (функциональную) части.

Метрологически значимая часть (устройство управления) дозатора оснащена встроенным программным обеспечением выполняющим функции по сбору, передаче, обработке и представлению измерительной информации.

Для защиты от несанкционированного доступа метрологически значимой части к параметрам регулировки и измерительной информации применяются настройки с использованием пароля. Изменение ПО через интерфейс пользователя невозможно. Обновления ПО в процессе эксплуатации не предусмотрено.

Идентификационные данные ПО доступны для просмотра при включении средства измерения, идентификационные данные функционального ПО отображаются на дисплее при работе средства измерения.

Функциональная часть ΠO является встроенной в энергонезависимой памяти. Защита от несанкционированного доступа к настройкам и данным обеспечивается невозможностью изменения функционального ΠO без применения специализированного оборудования изготовителя и принципом электронного пломбирования.

Защита ПО от преднамеренных и непреднамеренных воздействий соответствует уровню «высокий» по Р 50.2.077-2014.

Идентификационные данные ПО приведены в таблице 2.

Таблица 2 - Идентификационные данные ПО

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	TIA Portal	-
Номер версии (идентификационный номер) ПО	v15	v 2.1.1
Цифровой идентификатор метрологически значимой части ПО (контрольная сумма исполняемого кода)	_*	

^{* –} данные недоступны, так как данное ПО не может быть модифицировано, загружено или прочитано через какой-либо интерфейс после опломбирования.

Метрологические и технические характеристики

Таблица 3 – Метрологические характеристики

тиолици з тистрологи теские мириктеристики		
Наименование характеристики	Значение	
Номинальное значение класса точности по ГОСТ 8.610-2012	Ref (0,2)	
Класс точности по ГОСТ 8.610-2012	X(0,2)	
Наибольший предел Мах, кг	2000	
Наименьший предел (Min), кг	20	
Цена деления шкалы d, г	500	
Число делений шкалы, n, (n=Max/d)	4000	

Таблица 4 — Минимально допустимое значение номинальной минимальной дозы Minfill, наименьший предел Min, согласно ГОСТ 8.610-2012, кг

d, г	Класс точности
	X(0,2)
500	20

Таблица 5 – Метрологические характеристики

_	_ worse-quit			
	Значение массы дозы, F , г	Максимально допустимое отклонение каждой дозы от		
		среднего значения для класса Х(0,2)		
		Первичная поверка	При эксплуатации	
	15000 <f< th=""><th>±0,1 %</th><th>0,2 %</th></f<>	±0,1 %	0,2 %	

Таблица 6 – Основные технические характеристики

таолица о – Основные технические характеристики	n
Наименование характеристики	Значение
Параметры источника питания переменного тока:	
-напряжение, В	от 323 до 418
-частота, Гц	50±1
Условия эксплуатации:	
- температура окружающей среды, °С:	
- для ГПУ	от +15 до +35
- для системы управления	от 0 до +40
- относительная влажность, %	до 85 включ.
Габаритные размеры, Д х Ш х В, мм, не более	2550 x 2177 x 3830
Масса, кг, не более	1500
Вероятность безотказной работы за 2000 ч	0,92
Средний срок службы, лет, не менее	20

Знак утверждения типа

наносится в виде наклейки или фотохимическим способом на фирменную пластину, закрепленную на корпусе средства измерения, а также на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

Таблица 7 – Комплектность средства измерений

Наименование	Обозначение	Количество
Дозатор FLSmidth	FLSmidth	1 шт.
Руководство по эксплуатации	-	1 экз.
Паспорт		1 экз.

Поверка

осуществляется по документу ГОСТ 8.523–2014 «ГСИ. Дозаторы весовые автоматические дискретного действия. Методика поверки».

Основные средства поверки:

- рабочие эталоны единицы массы 4-го разряда в соответствии с приказом Росстандарта от 29.12.2018 г. №2818 (гири класса точности M_1 по ГОСТ OIML R 111-1–2009);
- весы неавтоматического действия по ГОСТ OIML R 76-1-2011, обеспечивающие измерения испытательной нагрузки с погрешностью, не превышающей 1/3 пределов допускаемых пределов погрешности дозаторов.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

Знак поверки наносится в соответствии со схемой пломбировки (рисунок 2-3) и/или на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к дозатору весовому автоматическому дискретного действия FLSmidth

ГОСТ 8.610–2012 ГСИ. Дозаторы весовые автоматические дискретного действия. Часть 1. Метрологические и технические требования. Методы испытаний

ГОСТ 8.523-2014 ГСИ. Дозаторы весовые автоматические дискретного действия. Методика поверки

Приказ Росстандарта от 29.12.2018 г. № 2818 Об утверждении Государственной поверочной схемы для средств измерений массы

Изготовитель

FLSmidth (UK) Ltd., Великобритания

Адрес: Wemco House, 9 Mitchell Court, Castle Mound Way, Rugby Warwickshire CV23 0UY, UK

Тел.: +44 (0)1788 555 777 Факс: +44 (0)1788 560 738 E-mail: info@flsmidth.com

Заявитель

Общество с ограниченной ответственностью «ФЛСмидт Рус» (ООО «ФЛСмидт Рус») ИНН 0273095234

Адрес:127055, г. Москва, ул. Новослободская, 23

Тел.: +7 (495) 641-27-78 E-mail: info@flsmidth.ru

Испытательный центр

Общество с ограниченной ответственностью «ПРОММАШ ТЕСТ» (ООО «ПРОММАШ ТЕСТ»)

Адрес: 117246, г. Москва, Научный проезд, д. 8, стр. 1, пом. XIX, ком. № 14-17

119530, г. Москва, Очаковское ш., д. 34, пом. VII, ком.6

Тел.: +7 (495) 775-48-45; +7 (495) 481-33-80

E-mail: info@prommashtest.ru

Аттестат аккредитации ООО «ПРОММАШ ТЕСТ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.312126 от 29.03.2017 г.

Заместитель			
Руководителя Федерального			
агентства по техническому			
регулированию и метрологии			А.В. Кулешов
	М.п.	« »	2020 г.